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Abstract
In this paper we present feedback-based information roadmap (FIRM), a multi-query approach for planning under
uncertainty which is a belief-space variant of probabilistic roadmap methods. The crucial feature of FIRM is that the
costs associated with the edges are independent of each other, and in this sense it is the first method that generates
a graph in belief space that preserves the optimal substructure property. From a practical point of view, FIRM is a
robust and reliable planning framework. It is robust since the solution is a feedback and there is no need for expensive
replanning. It is reliable because accurate collision probabilities can be computed along the edges. In addition, FIRM is
a scalable framework, where the complexity of planning with FIRM is a constant multiplier of the complexity of planning
with PRM. In this paper, FIRM is introduced as an abstract framework. As a concrete instantiation of FIRM, we adopt
stationary linear quadratic Gaussian (SLQG) controllers as belief stabilizers and introduce the so-called SLQG-FIRM. In
SLQG-FIRM we focus on kinematic systems and then extend to dynamical systems by sampling in the equilibrium space.
We investigate the performance of SLQG-FIRM in different scenarios.

Keywords
Planning, control, uncertainty, information, belief space

1. Introduction

Decision-making under uncertainty is a crucial ability for
most robotic systems. In the presence of uncertainty in a
robot’s motion and uncertainty in its sensory readings, the
true robot state is not available for decision-making pur-
poses. In such cases, a state estimation module can provide
a probability distribution over all possible states, referred to
as information state or belief. Therefore, decision-making
under motion and sensing uncertainties needs to be per-
formed in the information space (belief space). In its most
general form, this decision-making can be formulated as
a partially observable Markov decision process (POMDP)
problem (Astrom, 1965; Smallwood and Sondik, 1973;
Kaelbling et al., 1998). However, only a very small class of
problems formulated using POMDP can be solved exactly
due to its computational complexity (Papadimitriou and
Tsitsiklis, 1987; Madani et al., 1999). In particular, plan-
ning (i.e. solving POMDPs) over continuous state, control,
and observation spaces is a big challenge.

On the other hand, in the absence of uncertainty,
sampling-based path-planning algorithms including graph-
based methods such as probabilistic roadmap methods
(PRMs) (Kavraki et al., 1996) and their variants (see
e.g. Amato et al., 1998), and tree-based methods such as

rapidly-exploring randomized trees (RRTs) (Lavalle and
Kuffner, 2001), expansive space trees (Hsu, 2000) and their
variants (e.g. Karaman and Frazzoli, 2011) have shown
great success in solving robot motion planning problems.
Nevertheless, direct transformation of the roadmap-based
methods to planning under uncertainty (in belief space) is a
challenge for two main reasons. The first issue is ensuring
that the roadmap nodes are reachable. The second challenge
is that the incurred costs on different edges of the roadmap
depend on each other, which violates a basic assumption in
roadmap-based methods that each roadmap edge represent
an independent planning problem.

In this paper, we generalize the PRM framework to
obtain the feedback-based information roadmap (FIRM)
framework that takes into account both motion and sensing
uncertainties. FIRM is constructed as a roadmap (graph)
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Fig. 1. (a) A simple PRM in state space. (b) Assuming Gaussian belief space, belief snapshots along different paths starting from v0 and
ending at v11 are shown. As can be seen, the obtained belief depends on the path traveled by the robot. For example, P11( 0, 1, 3, 6, 9, 10)
denotes the estimation covariance at node v11, when the robot has traversed a path through nodes ( 0, 1, 3, 6, 9, 10) prior to node 11. (c)
Corresponding belief paths in the belief space. Belief at each node depends on the initial belief, actions taken (edges), and obtained
observations (random). Therefore, the generated structure in the belief space is not a graph but a random tree. (d) Unique beliefs
assigned to each PRM node. Using stabilizers, regardless of the action and observation history, the belief at each node stops at these
predefined beliefs. (e) The FIRM corresponding to the given PRM; bi

c denotes graph nodes in the belief space and μij denotes local
planners (graph edges).

in the belief space, where graph nodes are beliefs (rig-
orously speaking, small subsets of the belief space) and
edges are local controllers in belief space. FIRM is an
abstract generic framework that relies on the existence of
an appropriate belief node sampler and connector (local
controller). We also construct a stationary linear quadratic
Gaussian controller-based (SLQG-based) instantiation of
this generic framework, called SLQG-FIRM, where we pro-
vide a specific node sampler and connector. In SLQG-
FIRM we first focus on the kinematic systems and then
extend it to dynamical systems by restricting sampling
space to the equilibrium space. SLQG-FIRM is the first
method that generalizes the PRM to the belief space such
that the incurred costs on different edges of the roadmap
are independent of each other, while providing a straightfor-
ward approach to sample reachable belief nodes. This prop-
erty is a direct consequence of utilizing feedback controllers
in the construction of FIRM. Based on this property, the
FIRM framework breaks the curse of history in POMDPs

(Pineau et al., 2003), and provides the optimal feedback
policy over the roadmap instead of returning a single
nominal path.

Figure 1 illustrates the problem of edge dependence in
the direct transformation of PRM to stochastic domains. It
also shows the approach of FIRM in generating a graph in
belief space with independent edges. Figure 1(a) depicts
a simple PRM in the state space with twelve nodes V =
{v0, . . . , v11}. Figure 1(b) shows the belief evolution on the
underlying PRM. Assuming the belief is Gaussian in this
example, we represent a point in belief space using a mean
x̂+ and a covariance P, in other words, a belief b is charac-
terized by the pair b ≡ ( x̂+, P). In Figure 1(b), mean values
are shown by small filled circles, and covariance matrices
are shown by their corresponding 3σ ellipses centered at
the mean. We drive the system from v0 toward the node v11.
The initial belief at node v0 is b0 ≡ ( x̂+0 , P0). The belief
propagation from left to right starting from b0 is shown in
Figure 1(b).
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Although there exists a single edge e(10,11) between nodes
v10 and v11 in PRM (see Figure 1(a)), the belief evolu-
tion along e(10,11) is not unique (see Figures 1(b)–(c)) since
it depends on (i) the initial belief, (ii) obtained observa-
tions (observation history), and (iii) the path taken (action
history) that has led to v10. Figure 1(c) shows the cor-
responding belief propagation in the belief space, where
each rectangle encodes a mean and covariance. As seen in
Figure 1(c), the belief paths do not form a graph; rather,
they form a random tree in belief space. Hence, in practice,
where observations are random, not only does the number
of possible beliefs grow exponentially, but the belief also
evolves randomly.

Therefore, to predict edge costs, full knowledge of the
belief at the start of the edge is required. This in turn
requires full knowledge of the history of observations and
actions leading up to the start of the edge.

Even if future observations were assumed to be deter-
ministic for the purpose of planning, the generated structure
would still be a tree that grows exponentially in the size of
the underlying PRM graph.

In FIRM, we use local feedback planners to drive the
belief process toward the predefined unique beliefs asso-
ciated with PRM nodes (see Figure 1(d)). As a result, the
evolution of belief after a FIRM node is reached is indepen-
dent of the evolution of belief before that node is reached.
This breaks the curse of history, allowing us to construct
a PRM-like roadmap in the belief space with independent
edge costs. Therefore, in contrast to the main body of the lit-
erature in motion planning under uncertainty, FIRM can be
re-used for future queries and does not need to reconstruct
the roadmap every time a new query is submitted.

From an algorithmic perspective, this edge independence
is an example of the optimal substructure property. A prob-
lem has an optimal substructure only if the optimal solu-
tion can be obtained from a combination of optimal solu-
tions to its subproblems (Cormen et al., 2001). To solve
a problem using dynamic programming (DP) or its suc-
cessive approximation schemes, such as Dijkstra’s algo-
rithm, the optimal substructure assumption has to hold
(Sniedovich, 2006), that is, the cost of any subpath has
to be independent of what precedes it and what succeeds
it. As mentioned, the direct transformation of sampling-
based methods to belief space breaks this assumption, while
FIRM preserves it. Furthermore, edge independence allows
the challenging task of computing collision probabilities
to be done offline, for each edge separately, without per-
forming costly computations repeatedly and without any
simplifying assumption.

The current paper draws on earlier work published in
conference papers (Agha-mohammadi et al., 2011, 2012b,
2013b). Compared with Agha-mohammadi et al. (2011),
in this paper, we construct the FIRM framework more
rigorously by detailing the procedure of transforming
the POMDP problem to the belief semi-Markov decision
process (SMDP) problem, and then to the FIRM Markov

decision process (FIRM MDP) problem, where the policy
on the graph and overall hybrid policy generated by FIRM
are distinguished clearly. Also, in this paper we provide a
clearer distinction between the abstract FIRM framework
and its instantiations, and we provide more rigorous expla-
nation and proofs on SLQG-FIRM. Further, we append
the proofs of the probabilistic completeness of FIRM to
this paper, which completes the work in Agha-mohammadi
et al. (2012b). We also present new unpublished results on
the performance of SLQG-FIRM in more difficult environ-
ments, and demonstrate its real-time planning capabilities.
Further, we provide a complexity analysis of the method
and compare it to state-of-the-art methods.

The outline is as follows. In the next section, we review
the most relevant related work. Section 3 provides an
overview of the method and its contributions. In Section
4 we describe the general problem of feedback motion-
planning under uncertainty, present notation, and formu-
late the POMDP problem. In Section 5, we present the
SLQG-based instantiation of the abstract FIRM framework
by providing concrete belief samplers and connectors (local
planners). In Section 6, assuming the existence of belief
samplers and connectors, we introduce the abstract FIRM
framework and detail the process of transforming POMDP
to a FIRM MDP. In Section 7, aiming at evaluating the qual-
ity of the FIRM solution, we extend the concepts of success
and probabilistic completeness to the stochastic setting and
prove the probabilistic completeness of the FIRM frame-
work. Experimental results are presented in Section 8. In
Section 9, we discuss limitations of the framework, future
work, and open issues. Section 10 concludes the paper.

2. Related work

In this section we review the related work and place our
work into context. First, we review the related work on plan-
ning algorithms under uncertainty, and then we consider the
work concerning probabilistic completeness.

2.1. Planning algorithms

Uncertainty in robotic systems usually stems from three
sources: (i) motion uncertainty, which results from the
noise that affects system dynamics; (ii) sensing uncer-
tainty, caused by noisy sensory measurements, which is also
referred to as imperfect state information; and (iii) uncer-
tainty in the environment map, such as uncertain obstacle
locations or uncertain locations of features (information
sources) in the environment.

Methods such as those in Missiuro and Roy (2006),
Guibas et al. (2008), and Nakhaei and Lamiraux (2008)
deal with map uncertainty. However, we do not scruti-
nize these methods, since we assume there is no uncer-
tainty in the environment map. Methods such as those in
Alterovitz et al. (2007), Melchior and Simmons (2007),
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and Chakravorty and Kumar (2009, 2011) exploit sampling-
based motion-planning ideas to deal with motion uncer-
tainty. However, methods that are most related to FIRM
consider both motion and sensing uncertainties in planning,
where the ultimate goal is to solve a POMDP problem,
in other words, to find the best policy that generates opti-
mal actions as a function of belief. However, due to the
intractability of the POMDP solution, the practical results
using these methods are usually limited to problems with
small sets of discrete states (Kaelbling et al., 1998). Point-
based POMDP solvers such as those in Porta et al. (2006),
Kurniawati et al. (2008), Bai et al. (2010), and Ong et al.
(2010) have increased the size of problems that can be
solved by POMDPs. However, they do not handle continu-
ous state, control, and observation spaces. For the Gaussian
belief case, Van den Berg et al. (2011, 2012) handle con-
tinuous spaces locally around a given trajectory in belief
space. Platt et al. (2011) generalize the local approaches to
non-Gaussian beliefs.

In continuous state, control, and observation space, the
main body of methods does not follow the POMDP frame-
work due to its extreme complexity. Instead, these methods
return a nominal path as the solution of the planning prob-
lem, which is fixed regardless of the process and sensor
noise in the execution phase. Censi et al. (2008) propose
a planning algorithm based on graph search and constraint
propagation on a grid-based representation of the space.
Platt et al. (2010) plan in continuous space by finding the
best nominal path using nonlinear optimization methods.
In the linear quadratic Gaussian motion planning (LQG-
MP) method (Van den Berg et al., 2010), among the finite
number of RRT paths, the best path is found by simulat-
ing the performance of LQG on all RRT paths. Bry and
Roy (2011) propose a tree-based approach, in which the
underlying nominal trajectory is optimized using RRT*.
Vitus and Tomlin (2011) also propose an approach to opti-
mize the underlying trajectory by formulating the problem
as a chance-constrained optimal control problem. In Van
den Berg et al. (2011), the authors also extend the LQG-
MP to roadmaps. Prentice and Roy (2009) and Huynh and
Roy (2009) also utilize roadmap-based methods based on
the PRM approach, where the best path is found through
a breadth-first search on the belief roadmap (BRM). How-
ever, in all these roadmap-based methods, the optimal sub-
structure assumption is violated, in other words, the costs
of different edges on the graph depend on each other. The
point-based POMDP planner in Kurniawati et al. (2012)
takes into account motion, observation, and map uncer-
tainties, and advances the previous point-based methods
by introducing guided cluster sampling. It starts with a
roadmap in the configuration space, and grows a single-
query tree in the belief space, rooted in the initial belief.
Since these methods return a nominal path instead of a
feedback policy, the path needs to be recomputed (in other
words, replanning has to be performed) in the case of large

deviations or when starting from a new point. However,
unless the planning domain is small (e.g. in Platt et al.,
2010), replanning using these methods is computationally
very expensive. The reason for this is that the constructed
planning tree depends on the starting belief, and therefore
all computations needed to construct the tree (including
predicting future costs) have to be reproduced from the
new starting belief. BRM ameliorates this expensive com-
putation using covariance factorization techniques, but it
still does not satisfy the optimal substructure assumption.
Thus, for a new query from a new initial point, BRM needs
to perform the search algorithm again. In the presence of
obstacles, recomputing the collision probabilities is also
needed, which makes replanning even more expensive. In
other words, these methods are single-query, in the sense
that the edge costs are computed for a given query.

Since these methods are single-query, online replanning
can be done only if the planning domain is small (e.g. in
Platt et al., 2010) or if the planning horizon is short, such as
receding-horizon-control-based (RHC-based) approaches
(e.g. Chakravorty and Erwin, 2011). The method proposed
in Toit and Burdick (2010) is an RHC-based method, where
the nominal path is updated dynamically over an N-step
horizon. The PUMA framework proposed in He et al.
(2011) is also an RHC-based framework, where instead
of a single action, a sequence of actions (macro-action) is
selected at every decision stage. However, these methods
entail repeatedly solving open loop optimal control prob-
lems at every time step, which is computationally very
expensive as the previous computations cannot be reused
for the queries from the new initial point. In FIRM, how-
ever, a feedback policy (that is, a mapping from belief space
to actions) is computed offline. Thus in replanning from a
new initial point, the computations need not be reproduced.
Thus for a fixed goal, the algorithm is robust to changes
in the start point of the query. It is also robust to changes
in the goal point, because graph feedback can be computed
(see Equation (32)) online, which results in a multi-query
roadmap in the belief space.

In the methods that account for sensing uncertainty,
the state has to be estimated based on measurements.
To handle unknown future measurements in the planning
stage, the methods in Censi et al. (2008), Huynh and Roy
(2009), Prentice and Roy (2009), Platt et al. (2010), and
Toit and Burdick (2010) consider the maximum likelihood
(ML) observation sequence to predict the estimation perfor-
mance. In contrast, FIRM takes all possible future observa-
tions into account in the planning stage. The methods in
Van den Berg et al. (2010, 2011) also consider all possible
future observations.

In the presence of obstacles, due to the dependency of
collision events on each other in different time steps, it is
a burdensome task to include the collision probabilities in
planning. Thus, the methods in Censi et al. (2008), Van
den Berg et al. (2010, 2011), and Toit and Burdick (2010)
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design some safety measures to account for obstacles in
planning. A problem with some of these collision prob-
ability measures is that they are built on the assumption
that the collision probabilities at different stages along the
path are independent of each other, which is not true in
general and may lead to very conservative plans (see Fig-
ure 2). As a result, different methods (e.g. Patil et al., 2012)
aim at providing more accurate and faster ways of com-
puting collision probabilities. In FIRM, however, collision
probabilities can be computed and seamlessly incorporated
into the planning stage without making any simplifying
assumptions.

2.2. Probabilistic completeness

Due to the success of sampling-based methods in many
practical planning problems, researchers have investigated
the theoretical basis for this success. However, almost
all of these investigations have been performed for algo-
rithms that are designed for planning in the absence
of uncertainty. The literature in this direction falls into
two categories: path-isolation-based methods and space-
covering-based methods.

Path-isolation-based analysis: In this approach, one path
is chosen, and it is tiled with some sets such as ε-balls
(Kavraki et al., 1998) or sets with arbitrary shapes but
strictly positive measures (Ladd and Kavraki, 2004). Then
the success probability is analyzed by investigating the
probability of sampling in each of the sets that tile the
given path in the obstacle-free space. The methods in
Švestka and Overmars (1997), Kavraki et al. (1998), Bohlin
(2002), and Ladd and Kavraki (2004) are among those
that perform path-isolation-based analysis of the planning
algorithm.

Space-covering-based analysis: In space-covering-based
analysis, an adequate number of sampled points needed to
find a successful path is expressed in terms of a parame-
ter ε, which is a property of the environment. A space is
ε-good if every point in the state space can be connected
to at least an ε fraction of the space using local planners.
The methods in Kavraki et al. (1995) and Hsu (2000) are
among these.

These methods were developed for the situation where
the desired result from the planning algorithm is a path.
However, in the presence of uncertainty, the concept of ‘suc-
cessful path’ is no longer meaningful, because on a given
path, different policies may result in different success prob-
abilities, where some are interpreted as successful and some
are not. Thus, since the planning algorithm returns a policy
instead of a path, success has to be defined for a policy. This
paper extends these concepts to probabilistic spaces, that
is, to sampling-based methods concerning planning under
uncertainty. In Section 7, we define and formulate the con-
cepts of successful policy and probabilistic completeness
under uncertainty (PCUU).

3. Method overview and contributions

The highlights and contributions of this paper can be
divided into theoretical and practical parts. The theoretical
highlights can be summarized as follows:

• Abstract frameworks: We introduce the abstract infor-
mation roadmap (IRM) framework as a graph in the
belief space, where the graph nodes are beliefs (rigor-
ously speaking, small subsets of the belief space) and
edges are local controllers. The abstract FIRM frame-
work is defined as an IRM where local controllers are
feedback controllers. These abstract frameworks rely on
the existence of an appropriate belief node sampler and
connector (local controller) and are general enough to
capture any form of belief. Discussing the concept of
belief reachability under feedback controllers, we detail
the reduction of a POMDP to a tractable MDP on the
FIRM graph, referred to as the FIRM MDP.

• SLQG-FIRM : To instantiate a FIRM, we need con-
crete belief samplers and connectors. A concrete exam-
ple of these components based on SLQG controllers is
given in Section 5. Basically, it is shown that under an
SLQG controller the belief can be driven into the ε-
neighborhood of the sampled Gaussian beliefs in finite
time, and thus node reachability is achieved. In this
fashion, SLQG-FIRM addresses the hard task of sam-
pling in reachable belief space that is required in belief-
space planning (Spaan and Vlassis, 2005; Pineau et al.,
2006; Kurniawati et al., 2010). The focus of SLQG-
FIRM is on kinematic systems. However, we also extend
it to dynamical systems by restricting the nodes to the
equilibrium space.

• Graph (multi-query roadmap) in belief space: FIRM is
the first framework that generates a graph in the belief
space with independent edges. In other words, it is a
multi-query roadmap, which distinguishes it from other
methods in the belief space.

• Breaking the curse of history: A fundamental contri-
bution of FIRM is that the optimal action at a given
node does not depend on the traversed nodes, actions,
and observations prior to this node, in other words, it
is independent of the history of the information pro-
cess (see Figure 1). This is a direct consequence of
inducing reachable belief nodes using feedback con-
trollers, which breaks the curse of history in POMDPs.
In addition, the sampling-based nature of the method,
borrowed from PRM, allows us to ameliorate the curse
of dimensionality.

• Probabilistic completeness: Finally, we generalize the
conventional concept of ‘probabilistic completeness’
(which is defined for motion-planning methods in
deterministic environments) to the concept of PCUU
(which is defined for the planners in the presence of
uncertainty). According to this definition, we prove
that FIRM is a probabilistically complete algorithm.
Moreover, we perform an analysis on the absorption
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(a) (b)

Fig. 2. The dependence of collision events on each other at different time steps. xk is the robot state and F is the obstacle set (rectangles).
P( xk ∈ F) is the collision probability at the k-th time step. Drawn ellipses are 3σ ellipses of Gaussian distributions obtained by Kalman
filtering. Also, the samples in Monte Carlo simulation are shown by small circles. The dark ones have collided with obstacles and do not
get propagated, and the light ones are the safe samples. Although the overall collision probability in (a) is much more than the collision
probability in (b), simplified safety measures based on the ellipse–obstacle intersection area lead to the same safety measure in (a) and
(b), and are unable to capture this dependency.

probability of the local planners in the belief space,
which provides useful general tools that can be used in
analyzing planning methods under uncertainty.

More importantly, FIRM offers a set of practical con-
tributions, which we believe provides an important step
toward utilizing POMDPs as a practical tool for robot
motion planning under uncertainty. The main practical
highlights can be summarized as follows:

• Efficient planning: The construction of FIRM is offline
and thus online planning (and replanning) is feasible
and almost instantaneous.

• Robustness: The optimal feedback policy, instead of a
nominal path, is computed offline. It is obtained by solv-
ing the DP problem associated with the FIRM MDP on
the belief graph. As a result, no replanning is needed
even in the case of large deviations (or just local real-
time replanning is sufficient), and the feedback over the
belief space can take care of deviations. Therefore, the
method is robust to large deviations. It is also less sensi-
tive to linearization errors, since if the system goes out
of the linearization region of a controller, it falls into
the valid linearization region of some other controller
(assuming a sufficient number of FIRM nodes) that can
take the belief and drive it to the goal.

• Reliability (incorporating obstacles in planning): In the
FIRM framework, collision probabilities can be com-
puted, which leads to more accurate plans, as opposed
to simplified collision measures that may lead to con-
servative plans (see Figure 2). The obstacles add a fail-
ure node to the FIRM graph into which the robot can
be absorbed. Further, due to the offline construction of
FIRM, the heavy computational burden of estimating
collision probabilities can be done offline.

• Scalability: Belief-space planners usually have an expo-
nential planning complexity either in the number of
nodes (if they are sampling-based methods) or in the

Fig. 3. Block diagram corresponding to the problem of planning
under motion and sensing uncertainty.

size of grid (if they rely on discretizing the environ-
ment). However, the complexity of the FIRM construc-
tion is a constant multiplier of the complexity of the
PRM construction. Moreover, the complexity of plan-
ning (or replanning) with FIRM is a constant, which is
independent of the size of the underlying graph.

4. Problem formulation

The main sources of uncertainty in motion planning are the
lack of exact knowledge of the robot’s motion model, the
robot’s sensing model, and the environment model, which
are referred to as motion uncertainty, sensing uncertainty,
and map uncertainty, respectively. In this paper, we focus
on motion and sensing uncertainty, but some of the con-
cepts are extensible to problems with map uncertainty. The
MDP problem and the POMDP problem are the most gen-
eral formulations, respectively, for planning problems under
motion uncertainty and for planning problems under both
motion and sensing uncertainty.

While in the deterministic setting, we seek an optimal
path as the solution of the motion-planning problem, in the
stochastic setting, we seek an optimal feedback (mapping)
π as the solution of the motion-planning problem. In the
case of an MDP, π is a mapping from the state space to the
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control space, while in the case of POMDP, π is a mapping
from the belief space to the control space (see Figure 3). In
the rest of paper, we focus on POMDPs.

4.1. Preliminaries and notation

As mentioned, the POMDP formulation is the most gen-
eral formulation for the planning problem under pro-
cess (motion) uncertainty and imperfect state information
(sensing uncertainty). POMDPs are introduced in Astrom
(1965), Smallwood and Sondik (1973), and Kaelbling et al.
(1998). In the following, we first explain different elements
of the POMDP problem, and then present a form of the
POMDP formulation which is known as the belief MDP
problem (Thrun et al., 2005; Bertsekas, 2007).

State, control, and observation: Let xk ∈ X, uk ∈ U,
and zk ∈ Z denote the system state, control, and observa-
tion at time step k, respectively, where X ⊆ Rdx , U ⊆ Rdu ,
and Z ⊆ Rdz are the state, control, and observation spaces.
Scalars dx, du, and dz are the state, control, and observation
dimensions and Rd denotes the d-dimensional Euclidean
space.

Basically, system state x encodes all information needed
for decision-making at a specific time instant. It is worth
noting that the state space in our problem is continu-
ous. Control space U, which contains all possible control
inputs (or actions), can also be continuous, and u0:k :=
{u0, u1, . . . , uk} denotes the control history up to step k.
Similarly, the observation space Z that contains all possible
observations (sensor measurements) can also be continu-
ous, and z0:k := {z0, z1, . . . , zk} is the observation history up
to step k.

State evolution model: The process model (or the motion
model) xk+1 = f ( xk , uk , wk) describes how the system state
evolves as a function of the applied control uk and the pro-
cess (motion) noise wk , which is distributed according to the
(known) probability density function (pdf) p( wk|xk , uk). An
equivalent representation of this evolution model is through
the transition pdf p( x′|x, u) : X × U × X → R≥0, which
encodes the probability density of the transition from state
x to state x′ under the control u.

Observation (sensor) model: Although xk is sufficient
information to make the decision (generate control uk), in
partially observable systems, the system state is unknown
and the only available data for decision-making is the
imperfect measurements of the state made by the sensors.
The observation model zk = h( xk , vk) encodes the relation
between system state xk and its measurements zk , where vk

is the observation noise at time step k, which is distributed
according to the (known) pdf p( vk|xk). An equivalent repre-
sentation of this observation model is through the likelihood
pdf p( z|x) : X× Z→ R≥0.

Information state (belief): In partially observable envi-
ronments, the available data for decision-making in time
step k is the history of observations we have made, z0:k , and
the history of actions we have taken, u0:k−1. Let us denote

this data history by Hk = {z0:k , u0:k−1}. This data history
can be compressed to a conditional probability distribution
over all possible states, that is, bk = p( xk|z0:k ; u0:k−1). The
pdf bk : X × Zk × Uk−1 → R≥0 is called the information
state or belief at the kth step. B denotes the belief space of
the problem, containing all possible beliefs b ∈ B.

Belief evolution model (filter model): In recursive state
estimation techniques, belief can be computed recursively.
The belief evolution model (or belief dynamics) introduced
by this recursion is shown by function τ : B × U × Z →
B, which computes the next belief based on the last action
and current observation bk+1 = τ ( bk , uk , zk+1). This belief
evolution model can be derived using Bayes’ rule and the
law of total probability (Thrun et al., 2005; Bertsekas, 2007)
as follows:

bk+1 = p( zk+1|Hk , uk)−1p( zk+1|xk+1)∫
X

p( xk+1|xk , uk) bkdxk =: τ ( bk , uk , zk+1) (1)

An equivalent representation of the belief evolution model
is through the transition pdf p( b′|b, u) : B× U× B→ R≥0

that encodes the probability density of the transition from
belief b to belief b′ under the control u.

Policy: In a partially observable system, the planner π

(also called the policy or feedback controller) has to be a
function that returns an action uk given the available data
Hk . However, it can be shown that the compression of data
Hk to belief bk preserves all the information needed for
decision-making (Kumar and Varaiya, 1986). Therefore, a
policy π (·) has to be a function that returns an action uk

given the belief bk , in other words, π (·) : B→ U:

uk = π ( bk) , ∀bk ∈ B (2)

The space of all possible π (·) is denoted by �.
Cost-to-go: To choose an optimal policy, we need to have

a cost function, which is a task-dependent quantity. But let
us in general denote the one-step cost of taking action u at
belief b by c( b, u) : B×U→ R≥0. Then, we can define the
cost-to-go function Jπ (·) : B→ R≥0 from a belief b0 under
the policy π as

Jπ ( b0) :=
∞∑

k=0

E[c( bk , π ( bk)) ]

s.t. bk+1 = τ ( bk , π ( bk) , zk+1) , zk ∼ p( zk|xk) (3)

where E[·] is the expectation operator. Consider a goal
region Bgoal ⊂ B such that, for all u, we have c( b ∈
Bgoal, u)= 0; in other words, the goal region is cost-
absorbing. Then, the above cost-to-go would be finite for
a policy that can drive the state to the goal region in finite
time.

4.2. POMDP problem

Given the motion model f , observation model h, and cost-
to-go Jπ , the POMDP problem seeks the best policy that
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minimizes the cost-to-go function from every belief in the
belief space. Formally, if we denote the optimal cost-to-go
function by J (·), we can define optimal policy π (·) : B →
U, which is the solution of POMDP as follows:

J (·) := min
�

Jπ (·) (4)

π = arg min
�

Jπ (·) (5)

This formulation of the POMDP problem is also known
as the belief-MDP problem (Thrun et al., 2005; Bertsekas,
2007), because it is an MDP over the belief space.

Dynamic programming: It is well known that the optimal
cost-to-go is obtained by solving the following stationary
DP equation on the belief space B (Thrun et al., 2005; Bert-
sekas, 2007). Subsequently, the solution of the POMDP (i.e.
π ) can be computed as a function that returns the argument
of this minimization, that is, returns the optimal action at
every belief:

J ( b)= min
u
{c( b, u)+

∫
B

p( b′|b, u) J ( b′) db′},∀b ∈ B (6a)

π ( b) = arg min
u
{c( b, u)+

∫
B

p( b′|b, u) J ( b′) db′}, ∀b ∈ B

(6b)

However, it is well known that this DP equation is exceed-
ingly difficult to solve since it is defined over the entire
belief space and suffers from the curse of history (Pineau
et al., 2003) and the curse of dimensionality.

Constrained POMDP problems: The presence of con-
straints makes this problem even more difficult. We denote
the constraint set (or the failure set) in the state and control
space by F ⊂ X × U, which needs to be avoided by the
system, in other words, ( xk , uk) /∈ F, for all k.

4.3. Problem description

We aim at constructing a sampling-based solution to the
belief MDP problem. The main goals of this paper are as
follows.

SLQG-based FIRM : First, we construct a roadmap in
belief space utilizing SLQG controllers as belief stabilizers.
We perform this construction for a certain class of systems,
and show that the belief reachability condition is guaran-
teed. In designing SLQG-FIRM, we first focus on kinematic
systems (satisfying x = f ( x, 0, 0)). Then, using the notion
of equilibrium space and restricting the sampling to this
space, we apply the method to dynamical systems as well.

General FIRM framework: After studying the concrete
SLQG-FIRM example, we consider the more general case,
where, for a general system, assuming that there exists a
controller under which belief reachability is guaranteed, we
(i) construct a graph in the belief space encoding the fail-
ure probabilities on its edges, (ii) reduce the intractable
belief MDP in Equation (4) into a tractable MDP prob-
lem on this graph, and (iii) compute a feedback solution on
this graph.

5. SLQG-FIRM

In this section, we discuss a particular instance of the FIRM
framework in which belief reachability is accomplished by
SLQG controllers. In Section 6, we propose the general
FIRM framework.

We start this section by restricting our attention to the
class of systems that SLQG-FIRM can handle. Then, we
present a brief review of LQG controllers and address how
we can define nodes in the belief space to satisfy reachabil-
ity using SLQG controllers. Next we explain the procedure
of constructing local controllers (i.e. FIRM edges) and the
SLQG-based FIRM graph. Finally, we compute transition
probabilities and costs associated with each graph edge and
compute the graph feedback.

5.1. Preliminaries on SLQG

In this section, we assume the noise is Gaussian, and
we start by defining the notation needed in dealing with
Gaussian beliefs.

Gaussian belief space: We denote the random estima-
tion vector by x+, whose distribution is bk = p( x+k )=
p( xk|z0:k , u0:k−1), and denote the mean and covariance of
x+ by x̂+ = E[x+] and P = E[( x+ − x̂+) ( x+ − x̂+)T ],
respectively. Denoting the Gaussian belief space by GB,
every function b(·)∈ GB can be characterized by a mean-
covariance pair ( x̂+, P). Abusing the notation, we also show
this pair by b ≡ ( x̂+, P)∈ Rn × Sn

+, where the mean vec-
tor belongs to the n-dimensional Euclidean space Rn and
the covariance matrix belongs to the space of all positive
semi-definite n× n matrices Sn

+.
LQG controllers: An LQG controller is composed of

a Kalman filter (KF) as the state estimator and a linear
quadratic regulator (LQR) controller (see Figure 3). Thus,
the belief dynamic bk+1 = τ ( bk , uk , zk+1) is known and
comes from the Kalman filtering equations, and the con-
troller uk = μ( bk) that acts on the belief comes from the
LQR equations. Considering a quadratic cost for state error
and control error, LQG is an optimal controller for linear
systems with Gaussian noise (Bertsekas, 2007). However,
it is also often used for stabilization of nonlinear systems
around a given trajectory or around a given point.

Stationary and time-varying LQG: Time-varying LQG is
designed to track a given trajectory, in which at every time
step a different feedback policy is utilized. SLQG is a time-
invariant policy, in which LQG is designed around a given
point, say v, to steer the state of the system to v (Bertsekas,
2007). In Appendices B and C we review these controllers
in detail.

Equilibrium space: Let us denote a configuration of a
robotic system (Lozano-Perez, 1983) by q. Kinematic mod-
els are specified in terms of the configuration variable q,
while dynamical models are specified by the state x =
( q, q̇), where q̇ denotes the corresponding velocities. In
SLQG-FIRM, we sample the underlying PRM nodes (sta-
bilizer parameters) from the configuration space. Thus, for
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dynamical systems, we impose the condition q̇ = 0 on the
samples, in other words, we sample from the equilibrium
space of the system, which is denoted by X in this paper.

Remark 1. FIRM can be generalized to cases that do not
need to sample in equilibrium space. For example, in sys-
tems such as fixed-wing aircraft, the system cannot reach
the zero velocity q̇ = 0. In such cases, SLQG is not a
suitable choice and one needs to design more appropri-
ate controllers, such as periodic controllers as detailed in
Agha-mohammadi et al. (2012c, 2013a). In such a case,
we sample periodic maneuvers as FIRM nodes. In other
words, we go from periodic trajectory to periodic trajec-
tory instead of going from point to point (Agha-mohammadi
et al., 2012c, 2013a).

5.2. Belief stabilizers

In SLQG-FIRM nodes, we use SLQG controllers as belief
stabilizers, that is, as a tool to reach (stabilize to) a prede-
fined belief (FIRM node). To explain how SLQG works as
a belief stabilizer, consider a fixed point v ∈ X in the state
space and consider the following linear (linearized) system
about v:

xk+1= Axk + Buk +Gwk , wk ∼ N ( 0, Q) (7a)

zk= Hxk + vk , vk ∼ N ( 0, R) (7b)

SLQG controller: The goal of the SLQG controller
designed about v is to keep the state as close as possible
to the desired point v and also keep the energy consumed at
a reasonable level. More rigorously, SLQG minimizes the
following quadratic cost:

J = E

{∑
k≥0

( xk − v)T Wx( xk − v)+uT
k Wuuk

}
(8)

where Wx and Wu are positive-definite weight matrices that
are defined by the user. In Appendix C, the SLQG controller
minimizing the above cost is discussed in detail. However,
in brief, the belief propagation and control generation is
carried out as follows:

bk+1 ≡
[

x̂+k+1
P+k+1

]
=[

Âx+k + Buk +Kk+1( zk+1 −H( Âx+k + Buk) )
( I −Kk+1H) ( AP+k AT +GQGT)

]
≡ τ ( bk , uk , zk+1) (9)

where Kk is called the Kalman gain at the kth time step and
is computed as follows:

Kk+1 = ( AP+k AT +GQGT) HT( H( AP+k AT

+ GQGT) HT +MRMT)−1 (10)

The control signal is generated using a stationary feedback
gain Ls:

uk=−Ls( x̂+k −v) = : μ( bk) , Ls= (BT
s SsBs+Wu)−1 BT

sSsAs

(11)

where Ss is the solution of the following discrete algebraic
Riccati equation (DARE):

Ss =Wx + AT
s SsAs − AT

s SsBs( BT
s SsBs +Wu)−1 BT

s SsAs

(12)

Controllable and observable pairs: Consider an n ×
n matrix A. A pair of matrices ( A, B) is called a
controllable pair if the controllability matrix C =
[B, AB, A2B, . . . , An−1B] has rank n (Bertsekas, 2007). A
pair of matrices ( A, H) is called observable if the pair
( AT, HT) is controllable (Bertsekas, 2007).

Controllable and observable systems: Let us also define
the matrices Q̌ and W̌x such that GQGT = Q̌Q̌T, Wx =
W̌T

x W̌x. We next consider a class of linear systems and
quadratic cost weights that satisfy the following property.

Property 1. Pairs ( A, B) and ( A, Q̌) are controllable pairs,
and pairs ( A, H) and ( A, W̌) are observable pairs.

In the following, we present three lemmas, through which
we can construct reachable SLQG-FIRM nodes for the sys-
tems that satisfy Property 1. However, approaches such
as periodic LQG (PLQG)-based FIRM (Agha-mohammadi
et al., 2012c) or dynamic feedback linearization (DFL)-
based FIRM (Agha-mohammadi et al., 2012a) extend this
class of systems by excluding the controllability part in
Property 1, and thus consider a broader class of systems.

Lemma 1. Consider the SLQG controller designed to drive
the state of the system in Equation (7) to a point v ∈ X.
Given that Property 1 is satisfied, in the absence of a stop-
ping region, the belief bk under SLQG controller converges
to a unique stationary belief bs, in distribution (i.d.). In
other words, the distribution over belief converges to a
unique distribution. That is,

bk
i.d.→ bs ∼ N ( bc,C) (13)

Note that bk is a random belief that converges to another
random belief bs. In the Gaussian setting, the distribution
over the random belief bs is N ( bc,C), where bc = E[bs] ≡
( v, Ps). The stationary estimation covariance matrix Ps

is characterized in Lemma 2, and the covariance C is
characterized in Appendix C.

Proof. In Appendix C, we review the SLQG and prove
Lemma 1.

Lemma 2. Given Property 1, the following DARE has
a unique symmetric positive-definite solution (Bertsekas,
2007), denoted by P−s :

P−s = GQGT + A( P−s − P−s HT( HP−s HT + R)−1 HP−s ) AT

(14)

Moreover, the stationary covariance matrix Ps introduced
in Lemma 1 is computed as:

Ps = P−s − P−s HT( HP−s HT + R)−1 HP−s (15)
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Proof. See Appendix C or Bertsekas (2007).

Now we state the main result, through which we can
construct reachable FIRM nodes under SLQG-based belief
stabilizers:

Lemma 3. Consider the SLQG controller designed to drive
the state of the system in Equation (7) to a point v ∈ X.
Suppose matrix H is full rank and Property 1 is satisfied.
Then, any set B ⊂ B whose interior contains bc ≡ ( v, Ps)
is reachable under the designed SLQG controller start-
ing from any Gaussian distribution. Moreover, the estima-
tion covariance Pk converges to the unique deterministic
stationary covariance Ps.

Proof. See Appendix D.

Therefore, based on Lemma 3, SLQG can accomplish the
belief reachability for appropriately chosen region B. In the
next subsection we explicitly characterize region B.

5.3. Designing SLQG-FIRM nodes

Underlying PRM: As mentioned, to construct a FIRM we
first construct an underlying PRM (Kavraki et al., 1996). In
the SLQG-FIRM, nodes of the underlying PRM, denoted
by {vj}Nj=1, are sampled from the obstacle-free space. Con-
sidering linear systems or nonlinear systems that are locally
well approximated by linearization, we linearize the system
about every PRM node. Let us denote the linear (linearized)
system about vj as follows:

xk+1= Ajxk + Bjuk +Gjwk , wk ∼ N ( 0, Qj) (16a)

zk= Hjxk + vk , vk ∼ N ( 0, Rj) (16b)

where wk and vk are motion and measurement noise, respec-
tively, drawn from zero-mean Gaussian distributions with
covariances Qj and Rj.

FIRM nodes: To design the jth FIRM node Bj, we first
design the SLQG controller μ

j
s (see Equations (9) and (11))

corresponding to the system in Equation (16). The con-
troller μ

j
s is called the jth node controller or the jth belief

stabilizer. Given Property 1, based on Lemma 1, the limit-
ing random belief bj

s ≡ ( x̂+
j

s , Pj
s) exists, and x̂+

j

s and Pj
s are

the stationary estimation mean and covariance, respectively.
Note that under SLQG, x̂+

j

s is a random variable and Pj
s is

a deterministic matrix. Moreover, in Lemma 1, it is shown
that bj

c = E[bj
s] ≡( vj, Pj

s), where Pj
s is shown to be unique

and computed in Lemma 2.
Thus, we can characterize the jth node center:

bj
c ≡ ( vj, Pj

s) (17)

As a result, considering Bj as a ball with an arbitrary radius
ε > 0 centered at bj

c, the pair ( Bj, μj
s) is a proper pair, based

on Lemma 3; in other words, Bj is reachable under μ
j
s. Thus,

one can define the jth FIRM node as Bj = {b : ‖b−bj
c‖b <

δ}, where ‖ · ‖b denotes a suitable norm in belief space and

δ defines the FIRM node size. A typical example of such
a FIRM node in Gaussian belief space can be defined by
considering mean and covariance separately:

Bj = {b ≡ ( x, P) : ‖x− vj‖ < δ1, ‖P− Pj
s‖m < δ2} (18)

where δ1 and δ2 are suitably small thresholds that determine
the size of FIRM node Bj. Moreover, ‖·‖ is a suitable vector
norm and ‖ · ‖m is a suitable matrix norm. We denote the set
of all SLQG-FIRM nodes as V = {Bi}.

5.4. Designing SLQG-FIRM edges

A FIRM edge is actually a local planner (local feedback
controller). In SLQG-based FIRM, the local controller rep-
resenting the ( i, j)th edge is denoted by μij. The role of μij

is to drive the belief from the node Bi to the node Bj. Based
on Lemma 3, for a linear system, if we choose μij = μ

j
s,

as was done in Agha-mohammadi et al. (2011), the node Bj

is reachable under μij. However, to better cope with nonlin-
earities, we construct the local controller μij by preceding
the node controller with a time-varying LQG controller μ

ij
k ,

which is called an edge controller here. Time-varying LQG
controllers are described in detail in Appendix B.

PRM edge: To design edge controllers, first the
underlying PRM edges, denoted by E = {eij}, have to be
constructed. For kinematics-based models there are many
different methods in the PRM literature to construct such
edges. For dynamical models, there are fewer choices. A
few examples are in Van den Berg and Overmars (2007)
and Agha-mohammadi et al. (2012c).

Edge controllers: An edge controller μ
ij
k in SLQG-FIRM

is built by linearizing the system along the ( i, j)th PRM
edge eij and designing a time-varying LQG controller to
track it (see Appendix B). The edge controller has two
major roles. First, it tries to track the PRM edge and thus
exploits the available information on the PRM edges, such
as some clearance from the obstacles. Second, in the case
where the neighboring PRM nodes are not close to each
other, it takes the belief into the valid linearization region
of the jth belief stabilizer, where it hands the system over
to the belief stabilizer, and the belief stabilizer in turn takes
the system to the jth FIRM node.

Local controllers: Thus, overall, the ( i, j)th local con-
troller μij is the concatenation of the ( i, j)th edge controller
μ

ij
k and jth node controller (belief stabilizer) μ

j
s. We denote

the set of all SLQG-FIRM edges by M = {μij} and the set
of all SLQG-FIRM edges originating from Bi by M( i).

SLQG-FIRM : Formally, we define SLQG-FIRM as a
graph with the set of nodes V = {Bi} and the set of edges
(or local controllers) M = {μij}. The set of controllers
originating from Bi is denoted by M( i)⊂M.

5.5. Transition probabilities and edge costs

To find a feedback on a FIRM graph, we need to com-
pute the cost associated with the graph edges. Moreover, we

 at Texas A&M University - Medical Sciences Library on November 16, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


Agha-mohammadi et al. 11

include the constraint set F into the planning with FIRM
by computing the probability of violating the constraint
( x, u) /∈ F along the graph edges. Let us denote the cost
of taking controller μij at node Bi by Cg( Bi, μij). Super-
script g refers to the ‘global’ (or ‘graph-level’) quantities, as
these quantities are used to find the global policy (or policy
on the graph). Similarly, let Pg( Bj|Bi, μij) and Pg( F|Bi, μij)
denote the probabilities of the transition to Bj and F under
μij, respectively. These quantities are rigorously defined in
Section 6 and their connection with the original POMDP
is established. However, in this subsection, we just give an
example of how such costs and transition probabilities can
be computed.

Transition probabilities: Computing transition proba-
bilities Pg( ·|Bi, μij) in general can be computationally
expensive. Here, we utilize particle-based methods to
approximate the distributions and thus compute the colli-
sion probabilities. Basically, we can approximate the failure
and reachability probabilities based on the number of par-
ticles that violate the constraints (hit the set F) and based
on the number of particles that can reach the target node
(hit the set Bj). The method is described in more detail with
the experiments in Section 8.1.4. The dependency of col-
lision events on each other in different time steps, which
is ignored in most collision probability computation meth-
ods in the POMDP literature, can be taken into account
rigorously in particle-based methods. Owing to the offline
construction of FIRM, the high computational burden of
particle-based approaches can be tolerated. However, any
other method for computing transition probabilities can also
be adopted, such as that in Patil et al. (2012).

Edge costs: The FIRM edge costs in general and their
derivation based on the one-step costs of the original
POMDP problem are defined are Section 6. However,
roughly speaking, we can define the cost Cg( Bi, μij) as the
sum of all one-step costs along the edge until the system
reaches the target node Bj or hits the failure set F. Depend-
ing on the application, one can define a variety of cost
functions. Here, we form a cost function based on a linear
combination of the estimation accuracy and edge traverse
time. This cost function aims to find paths for which the
estimator (and hence the controller) can perform well, and
also to find faster paths. An indicator of estimation error is
the trace of estimation covariance. Thus, we define �ij =
E[

∑T
k=1 tr( Pij

k ) ] along the edge. In SLQG, the covariance
matrix evolves deterministically and thus the expectation
operator can be omitted. However, if the filter of choice in
the edge controller is the extended Kalman filter (EKF), the
covariance matrix evolution is also stochastic, and this mea-
sure can take into account its stochasticity. Let us denote the
mean stopping time under controller μij as T̂ ij. Then, the
total edge cost is considered as a linear combination of esti-
mation accuracy and expected stopping time, with suitable
coefficients α1 and α2:

Cg( Bi, μij)= α1�
ij + α2T̂ ij (19)

5.6. Graph feedback on SLQG-FIRM

Graph policy: Graph policy πg : V→ M is a function that
returns an edge (local controller) for any given node of the
graph. We denote the space of all graph policies by �g. To
choose the best graph policy in �g we define the optimal
graph cost-to-go Jg from every graph node.

Graph cost-to-go: The cost-to-go from a given node
Bi is equal to the cost of the next taken controller, that
is, Cg( Bi, πg( Bi)), plus the expected cost-to-go from the
next node or from the failure set. In other words, the DP
equations for this graph are

Jg( Bi) = min
M(i)

Cg( Bi, μij)+Jg( F) Pg( F|Bi, μij)

+ Jg( Bj) Pg( Bj|Bi, μij) (20a)

πg( Bi) = arg min
M(i)

Cg( Bi, μij)+Jg( F) Pg( F|Bi, μij)

+ Jg( Bj) Pg( Bj|Bi, μij) (20b)

in which J ( F) is a suitably high user-defined cost-to-go for
hitting the obstacles. The cost-to-go from goal node Bgoal is
defined to be zero, in other words, Jg( Bgoal)= 0.

Solving SLQG-FIRM DP: The DP in equation (20) is a
tractable DP as it is defined on a finite number of graph
nodes. Computing the transition costs and probabilities
offline, this DP can be solved online using standard tech-
niques, such as value/policy iteration methods, for any sub-
mitted query. As a result, FIRM is indeed a multi-query
roadmap in belief space. Moreover, if the goal node is fixed
and only the starting point of the query changes, then this
DP can be solved offline and πg can be stored as a look-up
table.

Offline construction of SLQG-FIRM : Algorithm 1 details
the construction of SLQG-FIRM with a given goal node.

5.7. Planning with SLQG-FIRM (query phase)

Given that the FIRM graph is computed offline, the
online phase of planning (and replanning) on the roadmap
becomes very efficient, and thus feasible in real time. In
this section, we assume that the goal node is fixed and we
just input the start point as the query. However, as discussed
in the previous subsection, one can easily submit queries
with different goal locations by solving the DP online. If
the initial belief b0 of the submitted query does not belong
to any Bi, we create a singleton set B0 = {b0} as the ini-
tial FIRM node. To connect B0 to the FIRM graph, we
go back into the state space, where the underlying PRM is
constructed. There, we add a new PRM node to the graph
v0, which is the expected value of the robot state, in other
words, v0 = E[x0]. Then, we connect v0 to the underlying
PRM graph based on the connecting function of the adopted
PRM. We denote the set of newly added edges originating
from v0 by E( 0). Then, corresponding to each edge in E( 0),
we design a local controller and call the set of them M( 0).
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Algorithm 1: Offline construction of SLQG-FIRM

1 input : Free space map, Xfree

2 output : FIRM graph G
3 Sample PRM nodes V = {vj}Nj=1 and construct its edges
E = {eij};

4 forall the PRM nodes vj ∈ V do
5 Design the node controller (SLQG) μ

j
s about the

node vi using Equation (11);
6 Compute associated bj

c using Equation (17);
7 Construct FIRM node Bj using Equation (18);

8 Construct V = {Bi};
9 forall the PRM edges eij ∈ E do

10 Design the edge controller (time-varying LQG) μ
ij
k

along the edge eij (detailed in Appendix B);
11 Construct the local controller μij by concatenating

edge controller μ
ij
k and node controller μ

j
s;

12 Set b0 = bi
c;

13 Generate sample belief paths b0:T and ground truth
paths x0:T induced by controller μij invoked at Bi;

14 Compute the transition probabilities Pg( F|Bi, μij)
and Pg( Bj|Bi, μij) and transition cost Cg( Bi, μij);

15 Construct M = {μij};
16 Compute the cost-to-go Jg and feedback πg over the

FIRM nodes by solving the DP in Equation (20);
17 G = (V, M, Jg, πg);
18 return G;

Finally, we choose the best initial controller among the local
controllers in M( 0) using

μ∗0(·) = arg min
μ∈M(0)
{Cg( B0, μ)

+ Pg( B( μ) |B0, μ) Jg( B( μ))+Pg( F|B0, μ) Jg( F) }
(21)

where B( μ) is the target node of the controller μ. Under the
controller μ∗0, belief evolves and enters one of FIRM nodes,
if no collision occurs. From this FIRM node, a combination
of the global graph policy πg and the local edge policies
{μij} can take the belief to the goal node, as explained
below.

Merging global and local feedbacks: After computing a
global graph feedback πg and local edge feedbacks {μij},
we can construct a full feedback π . Actually, at every time
instance, π is equal to one of the local feedbacks, which
is chosen by the global feedback in the last visited node. In
other words, given the current FIRM node, we use policy πg

defined on FIRM nodes to find μ∗ and pick μ∗ to move the
robot into B( μ∗). This process is continued until the system
reaches the goal region or hits the failure set. Algorithm 2
illustrates this procedure.

Kidnapped robot problem: In robotics, the kidnapped
robot problem commonly refers to a situation where an
autonomous robot in operation is carried to an arbitrary

Algorithm 2: Online phase algorithm (planning or
replanning with SLQG-FIRM)

1 input : Initial belief b0, FIRM graph G
2 if ∃Bi ∈ V such that b0 ∈ Bi then
3 compute μij = πg( Bi);
4 else
5 Compute v0 = E[x0] based on b0, and connect v0

to the PRM. Let E( 0) denote the set of outgoing
edges from v0;

6 Set B0 = {b0}; design local controllers associated
with edges in E( 0). Call the set of these local
controllers M( 0);

7 forall the μ ∈M( 0) do
8 Generate sample belief paths b0:T and ground

truth paths x0:T induced by controller μ

invoked at b0;
9 Compute the transition probabilities

Pg( F|B0, μ) and Pg( B( μ) |B0, μ) and
transition costs Cg( B0, μ);

10 Set i = 0 and choose the best initial local controller
μij within the set M( 0) using Equation (21);

11 while Bi �= Bgoal do

12

Set Bj as the target node of μij;

13

while bk /∈ Bj and ‘no collision’ do

14

Apply the control uk = μij( bk) to the system;

15

Get the measurement zk+1 from sensors;

16

if Collision happens then return Collision;

17

Update belief as bk+1 = τ ( bk , μij( bk) , zk+1);

18
Set Bi = Bj, then compute μij = πg( Bi);

location (Choset et al., 2005). Consider a kidnapped robot
problem in a known environment. Just after the robot is kid-
napped it would be risky to apply any control, because the
robot may be close to an obstacle. Thus, in such a sce-
nario, we first initialize the system belief with a Gaussian
with large covariance and go into an ‘information gather-
ing’ mode, where we do not apply any control signal and
only gather measurements until the covariance shrinks to a
reasonable covariance or it remains unchanged for a sig-
nificant amount of time (i.e. when there is no additional
information to reduce the uncertainty). Afterwards, we con-
nect the resulting belief to the FIRM nodes and continue
applying the FIRM policy to move the robot toward the goal
region. A more efficient approach of handling this prob-
lem is detailed in Agha-mohammadi et al. (2013c) using
innovation signals.

6. General FIRM framework

The goal of this section is to construct a general FIRM
framework, assuming that there exists a mechanism to guar-
antee belief reachability. As a result, if for a certain class of
systems one comes up with a controller that can accomplish

 at Texas A&M University - Medical Sciences Library on November 16, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


Agha-mohammadi et al. 13

belief reachability, a graph in belief space directly follows
according to this general framework.

To construct the general FIRM, we start by defining ele-
ments and assumptions needed in the FIRM construction.
Accordingly, we transform the original intractable POMDP
problem into an SMDP problem in belief space, inspired
by sampling-based methods. Then, we construct an arbitrar-
ily good approximation to the solution of this belief SMDP
over finite subsets of belief space (FIRM nodes). Doing so,
we end up with a tractable MDP, the so-called FIRM MDP.
We discuss this derivation first for the obstacle-free case and
then we add the obstacles to the planning framework. We
characterize the quality of the solution obtained by FIRM
via its success probability and provide a generic algorithm
for planning with FIRM.

6.1. Feedback controllers and reachability

Belief transition probability: As discussed in Section 4,
in partially observable environments the available data for
decision-making at time step k can be compressed as the
information state or belief bk . As discussed, using dynamic
estimation schemes, belief can be propagated as bk+1 =
τ ( bk , uk , zk+1) (see Equation (1)), which can be presented as
a one-step transition pdf p( bk+1|bk , uk) or a one-step tran-
sition probability P( B|bk , uk)= ∫

B p( bk+1|bk , uk), where
B ⊂ B.

Feedback controllers and induced transition probabil-
ity: In partially observable environments, at each stage, the
decision-making process is performed based on the belief
at that stage. Therefore, a controller is a mapping from
the belief space to the control space, in other words, μ(·) :
B → U. Accordingly, a controller μ induces a Markov
chain with the one-step transition probability P1( B|b, μ) :=
P( B|b, μ( b) ) over the belief space.

Hitting time: Let T ( D|b, μ)∈ [0,∞] denote the hitting
time on the set D ⊂ B under the controller μ starting from
belief b. Formally it is defined as

T ( D|b, μ) := min{k ≥ 0, bk ∈ D|b0 = b, μ} (22)

Stopping region: We call region B ⊂ B a stopping region
of the controller μ if we force the controller to stop execut-
ing as the belief reaches the region B; in other words, for all
b ∈ B, we impose P1( B|b, μ)= 1.

n-step transition probability: We define the n-step transi-
tion probability as the probability of landing in the stopping
region B in at most n steps:

Pn( B|b, μ) := Pr( T ( B|b, μ)≤ n) (23)

Stationary transition probability: Consider the controller
μ that starts executing from belief b and stops execut-
ing when the belief enters region B. Thus, we can define
P( B|b, μ) as the transition probability from b to B induced
by μ, when the controller stops executing; in other words,

P( B|b, μ) would be the probability of landing in the stop-
ping region B in a finite amount of time:

P( B|b, μ) := Pr( T ( B|b, μ) <∞) (24)

Reachability and accessibility: The stopping region B
is called reachable under a controller μ starting from b if
P( B|b, μ)= 1. The stopping region B is called accessible
under a controller μ from b, if P( B|b, μ) > 0.

αT-reachability: The stopping region B is called
αT-reachable under a controller μ starting from b if
PT ( B|b, μ)= Pr( T ( B|b, μ)≤ T) > α, in other words, if
the controller can drive the system into B in fewer than T
steps with a probability greater than α.

Reachability basin: The reachability basin B̆ associated
with the pair ( μ, B) is the set of all beliefs from which
B is reachable under μ in the absence of constraints. The
reachability (and αT-reachability) basins are thus defined
respectively as follows:

B̆ = {b ∈ B : P( B|b, μ)= 1} (25)

B̆( α, T) = {b ∈ B : PT ( B|b, μ) > α} (26)

Clearly, B ⊂ B̆, and in practical cases, B is much smaller
than B̆.

6.2. FIRM graph

In this section, we assume that there are no constraints (i.e.
F = ∅), and we reduce planning over the entire belief space
to planning over a representative graph constructed within
the belief space. Doing so, we can reduce the MDP prob-
lem in (4) over the continuous space into a tractable MDP
problem defined over the graph nodes.

Stabilizer sampling: The first step in the construction
of the proposed framework is to sample a set of stabiliz-
ers {μj}, where each stabilizer μ(·) is a mapping from the
belief space to the control space. Typically, every stabilizer
is characterized by a dv-vector of parameters v ∈ Rdv ; in
other words, we can denote the jth stabilizer more rigor-
ously as μj( ·; vj) : B → U. As a result, we can sample the
parameters V = {vj} and then construct a stabilizer corre-
sponding to each parameter. One can view the set V as a set
of underlying PRM nodes in the parameter space.

Sampling FIRM nodes: FIRM nodes {Bj} are disjoint sets
in the belief space, where the jth node has to be chosen such
that it is reachable under the j-stabilizer; in other words,
P( Bj|b, μj)= 1, with a sufficiently large B̆. We discuss the
size of B̆ further below. Note that, for practical purposes, the
reachability condition can be replaced by αT-reachability if
needed.

Connecting samples: Consider a set of N samples
{( μi, Bi) }Ni=1, where the reachability basin of the ith sam-
ple is denoted by B̆i. Now, consider {Bi}Ni=1 as the nodes of
a graph. The node Bi is connected to the node Bj if, starting
from any b ∈ Bi, we can reach Bj using μj. In other words
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Bi is connected to the node Bj if Bi ⊂ B̆j. Again, the reach-
ability condition can be replaced by the αT-reachability
condition.

Checking connection condition: For simple systems (lin-
ear with Gaussian noise) and some controllers (such as
SLQG), the connection condition can be checked analyti-
cally. However, in general, checking this connection con-
dition analytically may be very difficult. In such cases,
the Markov chain induced by the controller can be sim-
ulated numerically (e.g. using particle-based methods).
Accordingly, we can approximate the reachability (or αT-
reachability) probability and check if the condition is true
or not. Since this process is done offline, the computational
burden can be tolerated. However, as we will see further
below, in many cases designing suitable edge controllers
in practice increases the reachability probability such that
practically one can assume the reachability is satisfied, and
so there is no need to propagate the probability distribution.

Stopping region: By definition, the graph node B associ-
ated with the controller μ acts as the stopping region of the
controller. However, if the process under the stabilizer hits
another graph node before its corresponding graph node,
we can stop the controller and pick the best controller from
this intermediate node. Therefore, we can extend the stop-
ping region for all controllers to the union of all nodes

 := ∪N

l=1Bl. As a result, we will not necessarily have
P( Bi|b, μi)= 1 since the process may hit some other node
before Bi. However, we will have P( 
|b, μi)= 1 for all i in
the absence of constraints.

Local controllers (simplified connecting strategy): To
ease the connection step, and to have more distant nodes,
we can precede each stabilizer by a time-varying controller
(referred to as the edge controller). To illustrate this idea,
consider two nodes Bi and Bj, where Bi � B̆j; that is, Bi

cannot be connected to Bj through μj. In this case, we can
connect the underlying state nodes vi and vj in the state
space by a finite trajectory eij (say of length ι) and then
design a time-varying controller μ

ij
k , for k = 0, 1, . . . , ι, to

track this finite trajectory. Therefore, if the node Bi is in the
basin of reachability of the pair ( μ

ij
k , B̆j), then obviously Bi

would be in the basin of reachability of the pair ( μij, Bj),
where the controller μij = {μij

0:ι, μ
j}. We call μij the ( i, j)th

local controller, as it connects the node Bi to the node Bj.
Graph: Formally, we define the constructed graph with

the set of nodes V = {Bi}Ni=1 and the set of edges (or local
controllers) M = {μij}. The set of controllers available at
Bi is denoted by M( i) (i.e. the set of edges starting from
Bi). Similar to PRM, in which the path (final solution) is
constructed as a concatenation of edges on the roadmap, in
FIRM, the policy is constructed by the concatenation of the
local policies. However, it is worth noting that with this con-
struction we still perform planning in a continuous space
and do not discretize the control space.

Local controllers versus macro-actions: By the term
‘macro-action’ we mean a sequence of controls (actions)
(He et al., 2010, 2011). In other words, a macro-action is a
sequence of open-loop policies. It is important to note that a

local controller is not a macro-action, but rather a sequence
of policies (macro-policy), each of which is a mapping
from belief space to the continuous control space. Using
macro-actions results in an open-loop policy, which cannot
compensate for the belief-state deviation from the planned
path. However, under local controllers (macro-policies), the
effect of noise can be compensated for, due to the feedback
nature of the controllers, and thus, the belief can be steered
towards a stopping region.

6.3. Belief SMDP

In this section, we reduce planning over the entire belief
space into planning over a subset of belief space, which is
actually the union of FIRM graph nodes; that is, 
 = ∪jBj.

SMDP transition costs: First, we generalize the concept
of one-step cost c( b, u) : B × U → R≥0 to the one-step
SMDP cost Cs( b, μ) : B×M→ R≥0, which represents the
cost of invoking the local controller μ(·) at belief state b; in
other words,

Cs( b, μ) :=
T∑

t=0

c( bt, μ( bt) |b0 = b) (27)

where T := T ( 
|b, μ).
Belief SMDP: According to the above definitions, the

original POMDP, formulated using DP in Equation (6), can
be reduced to an SMDP (Sutton et al., 1999) in the belief
space, referred to as a belief SMDP:

Js( b)= min
μ∈M(i)

Cs( b, μ)+
∫




p( b′|b, μ) Js( b′) db′, ∀b ∈ Bi, ∀i
(28)

The integration over the entire belief space in Equation
(6) is reduced to integration over the sampled nodes (that
is, 
) in Equation (28), as μ stops executing.

6.4. FIRM MDP

Graph transitions: The DP in (28), though computationally
more tractable than the original POMDP, is defined on the
continuous neighborhoods Bi and thus is still formidable
to solve. However, for sufficiently small Bi and sufficiently
smooth cost functions, the cost-to-go of all beliefs in Bi are
approximately equal. Thus, we can define the graph-level
transition cost and probabilities Cg : V × M → R and
Pg : V × V × M → [0, 1] on the FIRM graph, in other
words, over the finite space V, such that Pg( Bj|Bi, μ) is the
transition probability from Bi to Bj under the local planner
μ. Similarly, Cg( Bi, μ) denotes the cost of invoking local
planner μ at the FIRM node Bi. Accordingly, Jg : V → R
is the cost-to-go function over the FIRM nodes. These
roadmap-level quantities are defined using the following
‘piecewise constant approximation’, which is an arbitrar-
ily good approximation for smooth enough functions and
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sufficiently small Bi:

∀b ∈ Bi,∀i

⎧⎪⎨⎪⎩
Jg( Bi) := Js( bi

c)≈ Js( b)

Cg( Bi, μ) := Cs( bi
c, μ)≈ Cs( b, μ)

Pg( ·|Bi, μ) := P( ·|bi
c, μ)≈ P( ·|b, μ)

(29)

where bi
c is a representative point in Bi. For example, if Bi

is a ball, the typical value for bi
c is the center of Bi. This

approximation essentially states that any belief in the region
Bi is represented by bi

c for the purpose of decision-making.
Obstacle-free FIRM MDP: Given the approximation in

Equation (29), the DP equation in (28) becomes

Jg( Bi) = Js( bi
c)= min

μ∈M(i)
Cs( bi

c, μ)+
∫




p( b′|bi
c, μ) Js( b′) db′

= min
μ∈M(i)

Cs( bi
c, μ)+

∑
j

∫
Bj

p( b′|bi
c, μ) Js( b′) db′

≈ min
μ∈M(i)

Cg( Bi, μ)+
∑

j

∫
Bj

p( b′|bi
c, μ) Jg( Bj) db′

= min
μ∈M(i)

Cg( Bi, μ)+
∑

j

J g( Bj) P( Bj|bi
c, μ)

= min
μ∈M(i)

Cg( Bi, μ)+
∑

j

J g( Bj) Pg( Bj|Bi, μ) , ∀i

(30)

Accordingly, we can get the graph feedback πg : V → M
through the following DP:

Jg( Bi) = min
μ∈M(i)

Cg( Bi, μ)+
∑

j

Pg( Bj|Bi, μ) Jg( Bj) , ∀i

(31a)

πg( Bi) = arg min
μ∈M(i)

Cg( Bi, μ)+
∑

j

Pg( Bj|Bi, μ) Jg( Bj) , ∀i

(31b)

Thus, the original POMDP over the entire belief space
becomes a finite N-state MDP in Equation (31) defined on
the finite set of FIRM nodes V = {Bi}Ni=1. We call the MDP
in Equation (31) the FIRM MDP in the absence of obsta-
cles. It is worth noting that Jg(·) : V→ R is the cost-to-go
function over the FIRM nodes, which assigns a cost-to-go
for every FIRM node Bi, and the mapping πg(·) : V → M
is a mapping over the FIRM graph from FIRM nodes into
the set of local controllers that returns the optimal local
controller that has to be taken at any FIRM node. Given
Cg( B, μ) for all ( B, μ) pairs, the DP in Equation (31) can
be solved offline using standard techniques such as the
value/policy iteration to yield a feedback policy πg over
FIRM nodes {Bi}.

6.5. Incorporating obstacles into FIRM MDP

In the presence of obstacles (i.e. state or control con-
straints), we may not assume that the local controller μij(·)

can drive any b ∈ Bi into Bj with probability one. Instead,
we have to specify the failure probabilities that the robot
collides with an obstacle (hits the failure set F).

Let us generalize the transition probabilities by defining
P( F|b, μ) as the probability of hitting failure set F before
hitting stopping region 
 under μ starting from b. Simi-
larly, we generalize Pg such that Pg( F|Bi, μ) := P( F|bi

c, μ).
Finally, we generalize the cost-to-go function by adding F
to its input set, that is, Jg : {V, F} → R≥0, such that Jg( F)
is a user-defined suitably high cost for hitting obstacles.
Note that the cost-to-go from the goal node is zero, that
is, Jg( Bgoal)= 0. Therefore, we can modify Equation (31)
to incorporate constraints by repeating the procedure in the
previous subsection to get the FIRM MDP in the presence
of obstacles:

Jg( Bi) = min
μ∈M(i)

Cg( Bi, μ)+Jg( F) Pg( F|Bi, μ)

+
∑

j

J g( Bj) Pg( Bj|Bi, μ) (32a)

πg( Bi) = arg min
μ∈M(i)

Cg( Bi, μ)+Jg( F) Pg( F|Bi, μ)

+
∑

j

J g( Bj) Pg( Bj|Bi, μ) (32b)

All that is required to solve the above DP equation is the
values of the costs Cg( Bi, μ) and the transition probability
functions Pg( ·|Bi, μ). Thus, the main difference from the
obstacle-free case is the addition of a ‘failure’ state to the
FIRM MDP along with associated probabilities of failure
from various nodes Bi.

6.6. Overall policy π

The overall feedback π : B→ U is generated by combining
the global policy πg on the graph and local policies {μij}.
Suppose at the kth time step the active local controller is
shown by μ∗k . It remains unchanged (μ∗k+1 = μ∗k ) and keeps
generating control signals based on the belief bk at each
time step, until the belief reaches the corresponding stop-
ping region, 
. Once the belief enters the stopping region

 = ∪jBj, it is in a graph node, say B∗k ∈ V. Accordingly,
the global policy πg chooses the next local controller, that
is, μ∗k+1 = πg( B∗k ). Thus, this hybrid policy is stated as
follows:

uk=π ( bk)=
{

μ∗k ( bk) , μ∗k = πg( B∗k−1) , if bk ∈ B∗k−1

μ∗k ( bk) , μ∗k = μ∗k−1, if bk /∈ 


(33)

Initial controller: Given the initial belief b0, if b0 is in one
of the graph nodes, then we just choose the best local con-
troller using πg. However, if b0 does not belong to any of
the graph nodes, we first make a singleton set B0 = {b0}
and connect it to the graph nodes based on the connect
methods discussed in Section 6.2. Denoting the outgoing
edges (local controllers) from B0 by M( 0), we compute
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the transition cost Cg( B0, μ), the transition probabilities
Pg( Bj|B0, μ) for all j, and failure probability P( F|B0, μ) for
invoking local controllers μ ∈M( 0) at B0. Then, we choose
the best initial controller μ∗0 as

μ∗0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arg min

μ∈M(0)
{Cg( B0, μ)+Pg( F|B0, μ) Jg( F)

+∑
j

Pg( Bj|B0, μ) Jg( Bj) }, if b0 /∈ 


πg( Br) , if ∃r, s.t. b0 ∈ Br

(34)

It is worth noting that computing μ∗0 is the only part of the
computation that depends on the initial belief b0 and that
has to be performed online; in other words, if a large devia-
tion occurs, μ∗0 is the only part that needs to be reproduced
for the new initial point. After μ∗0 drives the system to a
graph node, from there on the optimal policy is already
known. Computing μ∗0 is feasible in real time as M( 0)
contains a limited number of edges.

6.7. Success probability

We would also like to quantify the quality of the solution
π in the presence of obstacles. To this end, we require the
probability of success of the policy πg at the higher-level
Markov chain on FIRM nodes given by Equation (32b).
Without loss of generality let us assume that the first node
B1 is the goal node Bgoal. The DP in Equation (32) has
N + 1 states {F, Bgoal, B2, . . . , BN } that can be decomposed
into three disjoint classes: the failure class {F}, the goal
class {Bgoal}, and the transient class {B2, B3, . . . , BN+1}. The
goal and failure classes are absorbing recurrent classes of
this Markov chain. As a result, the transition probability
matrix of this higher-level N + 1 state Markov chain can
be decomposed as follows (Norris, 1997):

P =
⎡⎣Pf 0 0

0 Pgoal 0
Rf Rgoal Q

⎤⎦ (35)

where Pgoal = Pg( B1|B1, ·)= 1 and Pf = Pg( F|F, ·)= 1,
since goal and failure classes are the absorbing recur-
rent classes; in other words, the system stops once
it reaches the goal or it fails. Q is a matrix that
represents the transition probabilities between transient
nodes in the transient class, whose ( i, j)th element is
Q[i, j] = Pg( Bi+1|Bj+1, πg( Bj+1) ). Vectors Rgoal and
Rf are ( N − 1)×1 vectors that represent the probabil-
ity of transient nodes V \ Bgoal getting absorbed into the
goal and failure node, respectively; that is, Rgoal[j] =
Pg( B1|Bj+1, πg( Bj+1) ) and Rf [j] = Pg( F|Bj+1, πg( Bj+1) ).
Then, it can be shown that the success probability from any
desired node Bi ∈ V \ Bgoal is as follows (Norris, 1997):

P( success|Bi, πg) := P( Bgoal|Bi, πg)

= �T
i−1( I −Q)−1 Rgoal, ∀i ≥ 2 (36)

where �i is a column vector with all elements equal to zero
except the ith element, which is set to one. Note that the vec-
tor P s = ( I − Q)−1 Rgoal includes the success probability
from every graph node.

In the next section, we will discuss the success prob-
ability in more detail in the context of probabilis-
tic completeness. However, according to the computed
P( success|Bi, πg), one can compute the success probability
from any given initial belief b0 as

P( success|b0, π )=
∑

j

P( Bj|b0, μ∗0) P( success|Bj, πg)

(37)

where μ∗0 is given by Equation (34). Then, this suc-
cess probability is compared with a minimum accept-
able success probability, denoted by pmin. If the condition
P( success|b0, π ) > pmin is not satisfied, then the number of
nodes in the graph has to be increased until the condition
is satisfied. If, from the initial point b0, a successful policy
in the class of admissible policies exists, then this proce-
dure will eventually find a successful policy by increasing
the number of nodes, due to the probabilistic completeness
of the method, which is discussed in Section 7.1.

6.8. Generic FIRM algorithms

The generic algorithms for the offline construction of FIRM
and online planning with FIRM are presented in Algorithms
3 and 4, respectively. Concrete instantiations of these algo-
rithms for SLQG-FIRM are given in Algorithms 1 and 2,
respectively.

Algorithm 3: Generic construction of the FIRM graph
(offline)

1 Sample a set of stabilizer parameters V = {vi} and
construct stabilizers M = {μi} accordingly;

2 Sample a set of belief nodes V = {Bi} such that they
satisfy the reachability condition;

3 Connect the belief nodes using local controllers μij;
4 For each Bi and μ ∈M( i), compute the transition cost

Cg( Bi, μ) and transition probabilities Pg( Bj|Bi, μ) and
Pg( F|Bi, μ) associated with invoking μ at Bi;

5 Solve the graph DP in Equation (32) to compute
feedback πg over graph nodes, and compute π

accordingly;

Single-query versus multi-query: As mentioned earlier,
most approaches for planning in belief space in continu-
ous state, action, and observation spaces result in query-
dependent plans. However, one of the contributions of
FIRM is that its construction does not depend on the query.
In Algorithms 3 and 4, it is assumed that the goal is fixed
for all queries; in this case in the planning phase we are only
robust to changes in the starting point of the query. How-
ever, to make the algorithms also robust to changes in the
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Algorithm 4: Generic planning (or replanning) on
FIRM (online)

1 Given an initial belief b0, invoke the controller μ0(·) in
Equation (34) to take the robot into someFIRM node B;

2 while B �= Bgoal do
3 Given the system is in FIRM node B, invoke the

global feedback policy πg to choose the local
feedback policy μ(·)= πg( B);

4 Let the local controller μ(·) execute until the robot
is absorbed into a FIRM node B′ or until it hits the
failure set;

5 if Collision happens then return Collision;
6 Update current node B← B′;

goal belief, one can just move the last line of Algorithm 3 to
the first line of Algorithm 4. Note that the computationally
expensive part of Algorithm 3 is the computation of edge
costs, which is independent of the start and goal locations
of the submitted query.

6.9. Discussion

In summary, in FIRM we aim to transform the original
POMDP problem into a belief SMDP problem and solve
it on a subset of belief space. Given the smoothness of the
cost function and transition probabilities, the solution of the
FIRM MDP is arbitrarily close to the solution of the belief
SMDP over FIRM nodes. The important characteristic of
FIRM is that it is solved offline and thus performing the
online phase of planning (or replanning) is computationally
feasible in real time. To exploit the generic FIRM frame-
work, one has to find ( B, μ) pairs, where B is reachable (or
αT-reachable) under μ, as FIRM nodes and edges. Also,
transition costs and probabilities need to be computed.
Finally, the corresponding FIRM MDP needs to be solved,
which provides a global feedback policy on the graph that
can be used in planning, as detailed in Algorithm 4. SLQG-
FIRM, presented in Section 5, is an instance of FIRM, in
which the design of local controllers μij and FIRM nodes
Bi is based on the properties of SLQG controllers.

7. Probabilistic completeness under
uncertainty

In this section, we extend the concept of probabilistic com-
pleteness of planning algorithms for deterministic systems
to the concept of probabilistic completeness of planning
algorithms under uncertainty, based on Agha-mohammadi
et al. (2012b). Accordingly, in the next subsection, we
discuss the probabilistic completeness of the FIRM-based
algorithms. We start by reviewing the definition of success
and probabilistic completeness in the deterministic case,
and then we extend these definitions to the stochastic case.

Success in the deterministic case: In the deterministic
case, such as conventional PRM, the outcome of the plan-
ning algorithm is a path. Thus, success is defined for paths:

for a given initial and goal point, a successful path is a
path connecting the start point to the goal point which lies
entirely in the obstacle-free space.

Probabilistic completeness in the deterministic case:
In the absence of uncertainty, a sampling-based motion-
planning algorithm is probabilistically complete if by
increasing the number of samples, the probability of finding
a successful path, if one exists, asymptotically approaches
one.

A difference between the deterministic and the proba-
bilistic case: In the presence of uncertainty, success cannot
be defined for a path and has to be defined for a pol-
icy. Indeed, on a given path, different policies may result
in different success probabilities. Moreover, under uncer-
tainty, one can only assign a probability to reaching the
goal. Thus, to define success for a policy we consider a
threshold pmin ∈ [0, 1] and decide about success or failure
accordingly.

Successful policy: In the presence of uncertainty, the
solution of the planning algorithm is a function, called
a closed-loop policy or feedback. Therefore, success is
defined for policies: for a given initial belief b0 and goal
region Bgoal, a successful policy is a policy under which the
probability of reaching the goal from the given initial point
is greater than some predefined threshold pmin. In other
words, π is successful for a given b0 if P( success|b0, π ) :=
P( Bgoal|b0, π ) > pmin.

Policy in sampling-based methods: In sampling-based
methods, a policy is parametrized by a set of samples. These
samples can be in the state or belief space, based on the
algorithm. Let us denote these samples in a generic space
by {γ1, γ2, . . . , γN }. Thus, we can highlight the dependency
of the sampling-based policy on the samples by the notation
π ( ·; {γ1, γ2, . . . , γN }). The number of samples is denoted
by N .

Strong probabilistic completeness under uncertainty
(SPCUU): Suppose there exists a successful policy π̌ . Then
a sampling-based motion-planning algorithm is SPCUU if
increasing the number of samples without bound causes
the probability of finding a successful policy to approach
one. In other words, if there exists a successful policy π̌ ,
then we have the following property for the sampling-based
policy π :

lim
N→∞

P( Bgoal|b0, π ) > pmin (38)

where N is the number of samples in the sampling-based
method.

Achieving an algorithm that is SPCUU requires search-
ing in the entire space of policies, which is a computa-
tionally intractable task. Usually in solving POMDPs the
space of admissible policies is restricted to a sufficiently
rich subset of policy space, denoted by �, within which the
method searches for the best policy. Restricting the success-
ful policy to the set �, we define below a weaker notion of
PCUU.
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PCUU : Suppose that there exists a successful policy
π̌ ∈ �. Then, a sampling-based motion-planning algorithm
is PCUU if, when increasing the number of samples with-
out bound, the probability of finding a successful policy
approaches one. In other words, if there exists a success-
ful policy π̌ ∈ �, then for the sampling-based policy π , we
have lim

N→∞
P( Bgoal|b0, π ) > pmin.

As discussed in Section 6, in FIRM, inspired by the
sampling-based PRM framework, this reduction from the
entire function space to the restricted set of policies � is
performed by sampling feedback local planners and con-
catenating them. Therefore, the structure of local planners
defines the set �. Each local planner μij is parametrized
by its corresponding parameter vj. However, as mentioned
in Section 6.2, we can consider the set V = {vi} as the
set of underlying PRM nodes. Thus, any policy π ∈ �

is parametrized by the set of underlying PRM nodes V =
{vi}Ni=1. We highlight this dependency explicitly through the
notation π ( ·;V). Therefore, the PCUU condition for FIRM
can be written more explicitly as

lim
N→∞

P( Bgoal|b0, π ( ·;V)) > pmin (39)

For a concrete instantiation of FIRM, we can explicitly
characterize the set �. For example, in SLQG-FIRM, �

is the set of all possible policies that can be generated by
concatenating LQG controllers.

7.1. Probabilistic completeness of FIRM

Obviously, FIRM-based methods are not SPCUU algo-
rithms. However, in this section, we show that under mild
practical conditions, FIRM-based methods are PCUU algo-
rithms. We first provide an analysis of the local plan-
ners in belief space, and then state the assumptions more
rigorously.

Notation: The norm ‖·‖ is the supremum norm when it is
applied to functions. The norm ‖·‖op is applied on operators
and it stands for the operator norm (Keener, 2000). It is
worth noting that in this section, by the word ‘continuous’,
we mean ‘Lipschitz continuous’. Finally, we assume that
Xfree is a compact set.

Hyper-state: X = ( x, b)∈ Xh is referred to as hyper-state
(or h-state), which is a state-belief pair. The space of all h-
states is called hyper-state space (h-state space) Xh = X ×
B. Further, pμ(X ′|X ) denotes the one-step transition pdf
induced by the local controller, μ, over the h-state space.
Also, let Pn( S|X , μ) denote the transition probability from
h-state X into the set S ⊂ Xh in at most n steps.

Local planner and extended stopping region: The role of
the ( i, j)th local planner or local controller is to drive the
belief from the region Bi to its stopping region Bj in the
belief space (for ease of notation, we ignore the case where
the controller can stop in any FIRM node, and we restrict
its stopping region to Bj). In the presence of obstacles, we
extend the concept of stopping region to include obstacles

also. The stopping regions {Bj} in the belief space and the
stopping region F in the state space can both be extended
to the h-state space, respectively denoted by {Bj} and F ,
where Bj ⊂ Xh and F ⊂ Xh are defined as

Bj := {( X , b) |X ∈ Xfree, b ∈ Bj} (40)

F := {( X , b) |X ∈ F, b ∈ B} (41)

S j := Bj ∪ F , S j
:= Xh \ S j (42)

where S j and S j
, respectively, denote the entire stopping

region and transient region under the local controller μij.
Absorption probability of local planners: If, under the

dynamics induced by the local planner, the system reaches
the target node Bj, the local planner is considered to be suc-
cessful; if the system hits an obstacle, the local planner is
considered to have failed. The success probability of local
planners (i.e. the absorption probability into FIRM nodes)
is computed by solving the following integral equation that
results from the law of total probability:

P(Bj|X , μij) =
∫

Xh

pμij
(X ′|X ) P(Bj|X ′, μij) dX ′

=
∫
Bj

pμij
(X ′|X ) dX ′

+
∫
S j

pμij
(X ′|X ) P(Bj|X ′, μij) dX ′ (43)

where the second equality in Equation (43) follows from
substituting the following conditions, inherited from FIRM
construction, into the first integral:

P(Bj|X , μij)=
{

1, if X ∈ Bj

0, if X ∈ F
(44)

Henceforth, we drop indices i and j to unclutter expres-
sions. Thus, we can write

P(B|X , μ)=
∫
B

pμ(X ′|X ) dX ′

+
∫
S

pμ(X ′|X ) P(B|X ′, μ) dX ′

= R(X )+TS [P(B|·, μ) ] (X ) (45)

where the operator TS and the function R(X ) are
defined as

TS [f (·) ] (X ) :=
∫
S

pμ(X ′|X ) f (X ′) dX ′,

R(X ) :=
∫
B

pμ(X ′|X ) dX ′ (46)

The solution of the integral equation in Equation (45)
is expressed in the following as a Liouville–Neumann
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series (Keener, 2000), similar to the solution of the inho-
mogeneous Fredholm equation of second type (Keener,
2000):

P(B|X , μ)=
∞∑

n=1

Tn
S [R(·) ] (X ) (47)

We show that the series in Equation (47) is a convergent
series by resorting to the following assumption, which is a
weaker version of the aforementioned FIRM condition on
the design of nodes and local controllers.

Assumption 1. We assume that there exists some time step
N at which the controller stops with a positive probability.
Mathematically, there exists an N < ∞ and a β > 0 such
that PN (S j|X , μij)≥ β > 0, for all X .

This assumption is almost always true, as it rephrases the
role of the controller in driving the system toward the target
region. For example, if we have Gaussian noise (as is the
case in the SLQG-FIRM), the assumption is true at N = 1
regardless of the utilized controller.

Lemma 4. Given Assumption 1, we have⎧⎪⎨⎪⎩
‖Tn

S‖op ≤ 1, n < N

‖Tn
S‖op ≤ 1− β < 1, n ≥ N∑∞
n=0 ‖Tn

S‖op ≤ c <∞
(48)

Proof. See Appendix E.

Corollary 1. The series
∑∞

n=0 Tn
S [R] is a convergent series,

and therefore we can define the resolvent operator ( I −
TS )−1 [R] = ∑∞

n=0 Tn
S [R], where ‖( I − TS )−1 ‖op ≤ c <

∞.

Proof. See Appendix F.

According to Corollary 1, the success probability of the
local controller μ can be written, using the defined resolvent
operator, as

P(B|X , μ)= ( I − TS )−1 [R(·) ](X ) (49)

As the first result of this section (Proposition 1), we aim
to show that this absorption probability varies continuously
with respect to changes in parameters of the local planner.
However, we will first state two assumptions.

Assumption 2. We assume the local planning law and
induced transition probabilities are smooth; in other words,
we have assume the following.

• Local control laws are continuous in their parame-
ters, that is, for the ( i, j)th local controller, mapping
μij( ·; vj) : B → U is a continuous function in its
parameter vj.

• The transition pdf on h-state, that is, p(X ′|X , u),
is a continuous function of the control u; in
other words, there exists a c1 < ∞ such that
‖p(X ′|X , u)−p(X ′|X , ǔ) ‖ ≤ c1‖u− ǔ‖.

Finally, we state the following assumption, in which we
emphasize the fact that, as v→ v̌, the transition probability
induced by the local controller μ( ·; v) into the sets B and B̌
also has to converge, which is a reasonable assumption for
a smooth control law.

Assumption 3. Consider the controllers μ( ·; v) and
μ̌( ·; v̌), whose corresponding extended absorption regions
are denoted by B and B̌, respectively. We assume that there
exist real numbers r > 0 and c′ < ∞ such that for
‖v− v̌‖ ≤ r, we have

‖P1(B � B̌|X , μ) ‖ ≤ c′‖v− v̌‖ (50)

where � is the symmetric difference operator; in other
words, B � B̌ = (B \ B̌)∪( B̌ \ B).

Now we state the following proposition on the continuity
of the success probability of local planners.

Proposition 1 (Continuity of absorption probabilities).
Given Assumptions 1, 2, and 3, the absorption probability
P( Bj|b, μij) is continuous in parameter vj for all i, j, and b.

Proof. See Appendix G.

Now we present the main result regarding the probabilis-
tic completeness of FIRM-based methods.

Theorem 1. Given Assumptions 1, 2, and 3, any planning
algorithm under uncertainty that is generated based on the
FIRM framework (i.e. guarantees belief node reachability
and induces a roadmap in the belief space with independent
edge costs) is PCUU.

Proof. See Appendix H.

The basic idea of probabilistic completeness under uncer-
tainty stems from an idea similar to the one in the
path-isolation-based analysis for planners in deterministic
systems. Roughly speaking, in the path isolation argument
for sampling-based planners in the absence of uncertainty,
if there is a successful path and a non-zero neighborhood of
this path, in which every path is successful, we can eventu-
ally find a path in this neighborhood by increasing the num-
ber of samples unboundedly. Similarly, in the presence of
uncertainty, if there is a successful policy, it is parametrized
by some parameters (set of PRM nodes, in FIRM). Thus,
if there exists a non-zero measure neighborhood of these
parameters, within which selected parameters lead to a suc-
cessful policy, we can eventually reach a successful pol-
icy by increasing the number of samples unboundedly and
choosing samples in the target neighborhoods.

8. Experimental results

In this section, we first illustrate theoretical results from the
previous sections on a planar robot in a small 3D planning
domain. Then, we present planning results on a larger 3D
state space. Finally, we report the results of the method on
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a dynamical model of an eight-arm manipulator (sixteen-
degree-of-freedom state space). This section is followed by
a brief comparison with other state-of-the-art methods in
Section 9.

8.1. Planar 3D omnidirectional robot: Illustrat-
ing steps in construction and planning with
SLQG-FIRM

In this subsection, we focus on an omni-directional robot.
Its state is composed of its 2D position in the plane and its
heading angle. The goal in this section is to illustrate the
steps of constructing SLQG-FIRM and planning with it.

8.1.1. Motion model. A three-wheel omnidirectional
mobile robot is used in experiments with the nonlinear
kinematic model given in Kalmár-Nagy et al. (2004). The
state vector is composed of a 2D location and heading
angle x = [1x, 2x, θ ]T in a global world frame. Further,
u = [1u, 2u, 3u]T is the vector of controls, where iu is the
linear velocity of the ith wheel. The motion model for this
robot, in its original continuous form, is (Kalmár-Nagy
et al., 2004)

ẋ = fc( x, u, w)= T( x) u+ w (51)

where w is the motion noise, which is drawn from a zero-
mean Gaussian distribution, and

T( x)=
⎛⎝− 2

3 sin( θ ) − 2
3 sin( π

3 − θ ) 2
3 sin( π

3 + θ )
2
3 cos( θ ) − 2

3 cos( π
3 − θ ) − 2

3 cos( π
3 + θ )

1
3r

1
3r

1
3r

⎞⎠
(52)

where r is the distance of the wheels from the robot’s center
of mass. The discrete motion model is shown by

xk = f( xk−1, uk−1, wk−1) (53)

where wk ∼ N ( 0, Q) is the motion noise at the kth time
step, which is drawn from a zero-mean Gaussian distribu-
tion with covariance matrix Q. It can be shown that if we
linearize this system, the linearized motion model satisfies
the controllability condition in Property 1.

8.1.2. Observation model. In experiments, the robot is
equipped with exteroceptive sensors that provide range and
bearing measurements from existing landmarks (radio bea-
cons) in the environment. The 2D location of the jth land-
mark is denoted by Lj. Measuring Lj can be modeled as
follows:

jz = jh( x, jv)

= [‖jd‖, atan2( jd2, jd1)− θ ]T + jv, jv ∼ N ( 0, jR)
(54)

where jd = [jd1, jd2]T := [1x, 2x]T − Lj. The vector jv is a
state-dependent observation noise, with covariance

jR = diag( ( ηr‖jd‖ + σ r
b )2 , ( ηθ‖jd‖ + σ θ

b )2 ) (55)

In other words, the uncertainty (standard deviation) of the
sensor reading increases as the robot gets farther from the
landmarks; ηr = ηθ = 0.3 determines this dependence,
and σ r

b = 0.01 m and σ θ
b = 0.5◦ are the bias standard

deviations. A similar model for range sensing is used in
Prentice and Roy (2009). We assume the robot observes all
NL landmarks at all times and their observation noises are
independent. Thus, the total measurement vector is denoted
by z = [1zT, 2zT, . . . , NL zT]T, and, due to the independence
of measurements of different landmarks, the observation
model for all landmarks can be written as

z = h( x)+ v, v ∼ N ( 0, R) , R = diag( 1R, . . . , NL R)
(56)

It is straightforward to show that the linearized version
of this observation model satisfies the observability con-
dition in Property 1. Therefore, this entire system model
(motion and sensing models) satisfies Property 1 and thus
the SLQG-FIRM can be used for planning.

8.1.3. Construction of SLQG-FIRM nodes and edges. Fig-
ure 4(a) shows a sample environment, including obsta-
cles, landmarks, and enumerated nodes in ( 1x, 2x, θ ) space.
Nodes are shown by blue triangles, which encode the posi-
tion ( 1x, 2x) and heading angle θ of the robot. Landmarks
are shown by black stars. The corresponding FIRM nodes
are computed and shown in Figure 4(b). All elements in Fig-
ure 4(b) are defined in ( 1x, 2x, θ ) space but only the ( 1x, 2x)
portion of them is shown. Each bj

c ≡ ( vj, Pj
s) is illustrated

by a red dot representing vj, and a green ellipse represent-
ing the 3σ ellipse of covariance Pj

s. Each FIRM node Bj is
a neighborhood around bj

c. In the experiments, we define
the node region using the component-wise version of Equa-
tion (18) to handle the error scale difference in position and
orientation variables:

Bj = {b ≡ ( x, P) | |x− vj| .
< ε, |P− Pj

s|
.
< �} (57)

where |·| and
.
< stand for the absolute value and component-

wise comparison operators, respectively. We also set ε =
[0.07 m, 0.07 m, 1◦]T and � = εεT to quantify Bj. The
projection of Bj onto the space of estimation mean, that is,
Bj

x = {̂x+ : |̂x+ − vj| .
< ε}, is a neighborhood around vj,

which is shown by a cyan rectangle centered at vj. Projec-
tion of Bj onto the space of estimation covariances, that is,
Bj

P = {P : |P − Pj
s| .

< �}, is a neighborhood around
Pj

s. However, in a 2D plot Bj
P cannot be shown due to

its high dimension. Thus, we partially illustrate it only by
two dashed green ellipses that represent 3σ covariances of
Pj

s−�d and Pj
s+�d , where �d is the matrix �, whose off-

diagonal elements are set to zero. For illustration purposes,
both of these neighborhoods (i.e. Bj

x and Bj
P) are magnified

5x in Figure 4(b).

8.1.4. Transition costs and probabilities. After designing
FIRM nodes and local controllers, the transition costs and
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(a) (b)

Fig. 4. (a) The underlying PRM graph. Gray polygons are the obstacles and black stars represent the landmarks’ locations. (b) FIRM
nodes corresponding to PRM nodes.

probabilities need to be computed. Based on the given task
and needed accuracy, different approaches can be taken.
Here, we use a particle-based approximation of the distri-
bution to compute these quantities, where we use M = 100
particles. In other words, for every ( B, μ) pair, we perform
100 runs. At every run, a sample path of state x, a sample
path of estimation mean x̂+, and a sample path of estimation
covariance P is generated. If the filter of choice in the edge
controller is the linearized Kalman filter (LKF) (Crassidis
and Junkins, 2004; Simon, 2006), the covariance evolution
is deterministic and there is no need to generate 100 differ-
ent sample covariance paths. However, if the filter of choice
in the edge controller is the EKF (Crassidis and Junkins,
2004; Simon, 2006), then we need to generate the sample
covariance paths too, to take into account the stochasticity
of the covariance matrix. Figure 5(a) depicts sample paths
of the true state x and estimation mean x̂+ in green and
dark red, respectively, for M = 100 particles. Note that
when a true state path (green path) collides with an obstacle,
the process stops and failure happens. However, in this fig-
ure, for illustration purposes, we continue the process and
ignore the obstacles to better show the uncertainty tube and
information availability in different parts of the space. As
seen in Figure 5(a), the behavior of the true state on the
edges which have access to more accurate observations is
remarkably close to the planned behavior. In contrast, on the
edges that get less informative observations, the controller
cannot effectively compensate for deviations of the ground
truth from the nominal path, which can lead to collision
with obstacles.

To avoid clutter, Figure 5(b) the depicts sample esti-
mation covariance evolution only for a single particle. In
this figure, we let the process and observation noise be
zero, to keep the centers of the ellipses (i.e. estimation
means) on the planned points. However, note that in gen-
eral the estimation mean is affected by the noise (as is

seen in Figure 5(a)). Indeed, Figure 5(b) can be seen as the
maximum-likelihood estimation uncertainty tube over the
roadmap.

Let us denote the qth sample path for the true state by
x(q)

0:T q , for the estimation mean by x̂+(q)
0:T q , and for the esti-

mation covariance by P(q)
0:T q , where T q is the stopping time

of the qth particle in executing μ at B. Moreover, one can
assign a weight to each particle q based on the probabil-
ity of its occurrence. There are different ways proposed to
compute these weights in the sequential Monte Carlo liter-
ature (Doucet et al., 2001). However, the main condition is
that they have to sum to one, in other words,

∑M
q=1 w(q) = 1.

Here we simply consider w(q) = M−1. Note that if we par-
ticle μij at Bi, all these quantities also need to have an ij
superscript. Having these sample paths, we can compute the
transition costs and probabilities associated with invoking
μij at Bi. For the collision probability, we have

Pg( F|Bi, μij) = E[IF |Bi, μij] ≈
M∑

q=1

w(q)IF( x(q)
0:T q) (58)

Pg( Bj|Bi, μij) = 1− Pg( F|Bi, μij) (59)

where IF is the failure indicator. IF( x(q)
0:T q ) is one if there

exists a time step k ≤ T (q) such that xk ∈ F; otherwise it is
zero. Further, T q, or more rigorously T ij(q)

, is the stopping
time of the qth particle in executing μij at Bi. To compute
T ij(q)

, we only need to check the condition b ∈ Bj at every
time step and find the first time step where belief b enters
the stopping region Bj. Thus, we can compute the mean
stopping time as

T̂ ij = E[T ij] ≈
M∑

q=1

w(q)T ij(q)
(60)
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Fig. 5. Sample paths induced by controllers invoked at different nodes. (a) For M = 100 particles, sample ground truth paths and
sample estimation mean paths are shown in green and dark red, respectively. (b) The most likely path under the optimal policy and the
shortest path are shown in red and yellow respectively. The 3σ ML estimation uncertainty tube is drawn in blue.

To compute the filtering cost defined in Section 5.5, again
we use the particle-based representation of belief,

�ij = E

⎡⎣ T ij∑
k=1

tr( Pk) |Bi, μij

⎤⎦ ≈ M∑
q=1

T q∑
k=1

w(q)tr( P(q)
k ) (61)

where P(q)
k is the estimation covariance at the kth time step

of the qth particle. Finally, the cost of taking μij at Bj is as
follows:

Cg( Bi, μij)= α1�
ij + α2T̂ ij

where we used the coefficients α1 = 0.95 and α2 = 0.05.
Table 1 shows these quantities for several ( Bi, μij) pairs in
FIRM corresponding to Figure 5.

8.1.5. Planning and replanning on FIRM. Plugging the
computed transition costs and probabilities into Equation
(32), we can solve the DP and compute the graph policy πg.
This process is performed once offline if the goal location
is fixed. Figure 6(a) shows the policy πg on the constructed
FIRM in this example. Indeed, at every FIRM node Bi, the
policy πg decides which local controller has to be taken,
which in turn aims to take the robot to the next FIRM
node. Thus, the online part of the planning is significantly
efficient and reduces to executing the controller and gener-
ating the control signal, which is almost an instantaneous
computation.

Replanning: An important consequence of this frame-
work is that replanning can be performed using FIRM effi-
ciently. Suppose due to some unmodeled large disturbance,
the robot’s belief deviates significantly from the planned
path; in other words, for some appropriate norm ‖ · ‖ on
belief space we have ‖bk − E[bp

k]‖ > �, where bp
k is the

planned belief at the kth time step, and � is the threshold
for deciding if replanning is needed or not. In such cases,

replanning occurs based on Algorithm 2. In Figure 6(b),
we illustrate a simple replanning process. In this figure it
is assumed that an unmodeled large disturbance affects the
system such that the estimation mean significantly deviates
from the planned path. The deviated mean is shown on the
figure as the ‘restart point’. Thus, based on Algorithm 2,
we connect this point to PRM. In Figure 6(b) the newly
added PRM edges (i.e. E( 0)) are shown by dashed green
lines. Then, for every edge in E( 0), we design a local con-
troller. Call the set of newly constructed local controllers
M( 0). For every μ ∈ M( 0) compute corresponding transi-
tion costs and probabilities. Finally, according to Bellman’s
principle of optimality, we use the precomputed costs-to-
go Jg(·) to decide which controller has to be taken at the
‘restart point’ using Equation (34). Taking this controller,
the belief enters into a FIRM node, and from there again we
can use the precomputed πg to control the robot toward the
goal region.

We show the most likely path under πg in red in
Figure 5(b). The shortest path is also illustrated in Fig-
ure 5(b) in yellow. It can be seen that the ‘most likely path
under the best policy’ detours from the shortest path to a
path along which the filtering uncertainty is smaller and it
is easier for the controller to avoid collisions.

8.2. Larger environment

In this section, we consider the same omnidirectional robot
with the same observation model, and we perform planning
in a larger environment (shown in Figure 7) whose size is
almost 10,000 m2. Every grid square is a 10× 10 area. The
standard deviation of the process noise is assumed to be
1 m for the positional degrees of freedom and 7◦ for the
angular degree of freedom. We start with a five-node FIRM
and at every step we randomly sample five more nodes until
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Table 1. Computed costs for several node-controller pairs in FIRM using 100 particles.

( Bi,μij) pair B1,μ1,4 B4,μ4,8 B8,μ8,10 B10,μ10,11 B11,μ11,12 B1,μ1,3 B3,μ3,6 B6,μ6,12

Pg(Bj|Bi,μij) 97% 95% 99% 77% 79% 87% 55% 79%
�ij 18.5967 11.2393 6.8229 15.1148 26.2942 23.6183 48.8189 43.6207
E[T ij] 238.2 193.0 150.0 209.6 170.8 200.3 242.4 219.2
σ [T ij] 21.8 28.7 15.1 24.5 22.6 22.7 30.1 26.7

Fig. 6. Planning and replanning on FIRM. (a) Policy πg resulted from solving the DP in Equation (31) is shown by red arrows. Indeed,
for every FIRM node, the policy πg tells us which controller has to be taken. (b) In this figure it is assumed that an unmodeled large
disturbance affects the system such that the estimation mean significantly deviates from the planned path. The deviated mean is denoted
by ‘restart point’ in the figure.

we reach 500 nodes. Thus, overall, we construct 100 FIRM
graphs in this environment, for each of which we measure
the construction time (cumulative) and compute the suc-
cess probability. Plots in Figure 8 show these quantities as
a function of the number of nodes for a sample run on an
Intel i5 dual-core 1.7 GHz machine with 4 GB memory.
Further, 50 particles are used for collision-checking, and
every node in the underlying PRM is connected to its three
nearest neighbors.

Basically, FIRM construction is an anytime algorithm in
the sense that one can increase the number of nodes and
stop enlarging the graph when a termination condition is
satisfied such as: (i) achieving a desirable success probabil-
ity or a desirable cost-to-go, (ii) no change being observed
in the success probability or in the cost-to-go for a signifi-
cant time, or (iii) exceeding the maximum time allowed for
offline computation.

Again, as is seen in Figure 7, the highest-likelihood path
under the optimal policy detours from the shortest path
toward the more informative regions in the environment.
As a result, it reduces the collision probability and at the
same time increases the estimation accuracy and controller
efficiency. However, it is important to note that the returned
solution is not a single path, but it is a feedback law over
the entire space. For the video of executing this plan (with
fewer nodes to unclutter the video), see Extension 1.

We also conducted a simulation to illustrate the robust-
ness of the method to large deviations. In this simulation,
the robot is pushed away from the roadmap several times
by some large disturbances, and replanning is performed
online based on Algorithm 2. The video of this simulation
is also available (see Extension 2).

8.3. Eight-arm manipulator

On a given graph, the number of paths between two given
points grows exponentially with the size of graph. Thus,
in the direct propagation of uncertainty on a roadmap, the
number of edge costs and transition probabilities that need
to be computed is exponential in the number of underly-
ing PRM nodes (see Section 9 for a detailed analysis). As
a result, when we deal with high-dimensional state spaces,
where PRM needs to have many edges and nodes, it is not
feasible to use the methods that perform direct uncertainty
propagation. However, using FIRM, we only need to com-
pute the costs and transition probabilities for as many edges
as the underlying PRM has. Thus, we can easily increase
the dimension to the level that PRM can handle, and the
complexity of the algorithm is increased only by a con-
stant factor (involving computation of costs and transition
probabilities of a single edge). In the following experi-
ment, we verify the effectiveness of FIRM in handling
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Fig. 7. (a)–(f) Different snapshots of the roadmap for 50, 75, 105, 275, 425, and 500 nodes, respectively. The most likely paths under
the optimal plan are also shown in blue. Stars show the landmarks. The means and covariances of the FIRM node centers are shown by
small blue triangles and their associated red ellipses, respectively. Also, see Extensions 1 and 2 regarding the video of planning with
FIRM in this environment.

Fig. 8. A sample run showing (a) the success probability of the generated plan versus the number of nodes, as well as (b) the construction
time (offline) for the plan.

high-dimensional systems through a simple example of an
eight-arm manipulator. To the best of our knowledge, this
is the first belief-space planner that can provide a plan over
an entire roadmap for an eight-dimensional system while
incorporating expensive costs in planning, such as com-
puting collision probabilities. This experiment shows that
FIRM can be used as a practical tool in many real-world
problems.

8.3.1. Motion model. We consider an eight-arm manipu-
lator with eight revolute joints in the plane. The state of
the system is described by the angles of joints and their
velocities x = ( θ1, . . . , θ8, θ̇1, . . . , θ̇8)T, and the available
control is considered to be the angular acceleration (or
torque) of joints u = ( α1, α2, . . . , α8). The process noise
w = ( w1, w2, . . . , w8) is modeled as a zero-mean Gaussian
noise on angular accelerations. Therefore, the continuous
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motion model for every link is θ̈i = αi +wi, whose discrete
version for the entire state can be written as

xk+1 = Axk + Buk + Gwk (62)

where

A =
(

I8 I8δt
08 I8

)
, B =

(
08

I8δt

)
, G =

(
08

I8

√
δt

)
(63)

where δt is the time interval between two consecutive time
steps, and In and 0n are the identity matrix and square zero
matrix of dimension n, respectively.

8.3.2. Observation model. We use the light–dark environ-
ment setting as the observation model, which is also used in
Platt et al. (2010, 2011). In the light–dark environment, the
accuracy of sensory readings is encoded by a gray level,
in which the regions that have access to more accurate
sensory readings are lighter than the regions that do not
have access to such informative sensory readings. In this
experiment, we assume that we measure the state of the
system, but this measurement is more accurate as we get
closer to the left wall on which our sensor is mounted. (This
model is adopted from Platt et al. (2010).) Thus, we have
z = h( x)= [z1, . . . , z8]T , where

zi = θi + vi, vi ∼ N ( 0, ( η|xi − l| + σb)2 ) (64)

where xi is the x coordinate of the ith joint location, l is the
location of the vertical wall, η defines the dependency of the
noise standard deviation on the distance from the wall, and
σb is the bias standard deviation. Figure 9 shows an example
of such an environment, in which l = −1.5, η = 0.1, and
σb = 10−4. The full observation model can be written as

zk = h( xk)= Hxk +Mvk (65)

where H = [I8, 08] and M = I8.

8.3.3. Sampling stabilizer parameters. The described sys-
tem is a controllable and observable system, and thus we
adopt the SLQG controller as the stabilizing controller.
Therefore, the parameters of the controller are points in
the equilibrium space, as explained in Section 5. In other
words, to generate sample nodes in the state space, we need
to sample the configuration space ( θ1, . . . , θ8) and append
zero angular velocities to it. To connect these samples in
the state space we design simple trajectories between nodes,
along which we accelerate the joints (angles) with constant
acceleration until they are halfway to the next node, and
after which we decelerate the joints until they reach the next
node.

8.3.4. Construction of the SLQG-FIRM and planning with
it. First, corresponding to sampled nodes in the state space,

we compute corresponding FIRM nodes and then design
local controllers according to Algorithm 1. In a similar pro-
cedure to the one in the previous experiment, we compute
the transition costs and probabilities.

To solve the DP, we need to characterize the goal nodes.
In Figure 9, the goal region for the tip location of the
manipulator is shown by a purple circle. We mark all PRM
samples whose tip locations are within the goal region as
goal nodes. Setting the cost-to-go to zero for all goal nodes,
we solve the DP and compute the optimal feedback on the
graph according to Algorithm 1. Finally, we execute the
plan based on Algorithm 2 and we illustrate the propagation
of the covariance of the manipulator tip in Figure 9 in red.
As can be seen in Figure 9, there are two passages among
the obstacles to reach the goal region. Although the right
passage is closer to the initial configuration of the manip-
ulator, the manipulator detours to a longer path through
the left passage, because there is more accurate sensory
information available in the left passage than the right one.
As is seen in this example, the feedback plan minimizes
the collision probability and picks the safest path, while
being robust to deviations. In other words, if for any reason
the manipulator deviates significantly from the underlying
PRM, the feedback plan connects the deviated belief to the
best neighboring FIRM node in real time, and continues the
pre-computed plan from this node.

9. Comparison and limitations

In this section, we perform a short comparison of SLQG-
FIRM against the two most related methods in the literature:
BRM (Prentice and Roy, 2009) and LQG-MP on roadmaps
(Van den Berg et al., 2011). Both methods are belief-space
planners that exploit roadmap-based ideas. We compare
the methods in terms of the offline construction and online
planning complexity, and also in terms of some other
properties, all listed in Table 2. In the following, we go over
the complexity analysis that leads to the entries in this table.
Afterwards, we discuss limitations of the SLQG-FIRM.

Offline construction complexity: In a general graph, the
number of paths between two given nodes is exponential in
the number of nodes N . For example, if each node in a graph
is connected to k nearest neighbor nodes on the graph, for
a search depth of d edges on the graph, the corresponding
search tree contains kd paths. Notice that each of these paths
has d edges on it. Thus, if we directly (without using belief
stabilizers) propagate the uncertainty on a roadmap for a
depth of d, we have to evaluate the cost on dkd edges. So,
the asymptotic complexity of the overall problem is of the
order O( NkN ). Now, if computing the cost and transition
probabilities associated with each edge under uncertainty is
a constant multiplier O( c) of computing its cost in a deter-
ministic case, the overall complexity of the methods based
on direct belief propagation is O( cNkN ). On the other hand,
in any variant of FIRM, due to the edge independence, only
the cost of O( Nk) edges needs to be constructed as in PRM,

 at Texas A&M University - Medical Sciences Library on November 16, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


26 The International Journal of Robotics Research 0(0)

Table 2. Belief space roadmap-based method comparison (without using a heuristic in search algorithms).

Algorithm Offline
construction
complexity
(no heuristic)

Replanning
(online
planning)
complexity

Future
observations

System
requirement

Valid region
of plan

Collision
probabilities

Generic PRM O( Nk) O( k) ——— Assumes a controller
exists to drive the
system from node to
node

On the graph
only

———

BRM O( cNkN ) O( c N
l kN ) or

O( cNkN )

Maximum
likelihood
observation

Well linearizable
systems

Vicinity of the
nominal path

Not considered

LQG-MP on
roadmaps

O( cNkN ) O( cNkN ) All observations Well linearizable
systems

Vicinity of the
nominal path

Simplified
measures are
used

Generic FIRM O( cNk) O( ck) ——— Assumes a controller
exists to drive the
system from node to
node

Union of con-
vergence regions of
local controllers

———

SLQG-FIRM O( cNk) O( ck) or O( 1) All observations Well linearizable, and
linear controllable and
observable systems

Vicinity of whole
PRM (entire space
for a dense PRM)

Computed

and thus the overall complexity of offline construction of
FIRM is O( cNk).

Online planning (replanning) complexity: If the system
deviates from the valid region of the plan, in direct prop-
agation methods, edge costs need to be recomputed for all
edges. So, in BRM and LQG-MP on roadmaps, the replan-
ning complexity will be of the order O( NkN ). If the cost
of each edge is defined in such a way that it only depends
on the belief at the start and end of the edge (i.e. does not
depend on the belief along the edge), BRM can reduce the
computation complexity to O( c( N/l) kN ) through covari-
ance factorization techniques, where l is assumed to be the
length (number of steps) of each edge. In FIRM, in the
case of replanning (submitting a query with new starting
point), it is only necessary to connect the deviated belief to
k neighboring FIRM nodes. Thus, we only need to compute
the cost for the k new edges. It is worth noting that if the
underlying PRM is dense enough that the valid region of
the local controllers covers the space, edge-cost computa-
tion in the replanning phase reduces to zero, because if the
system deviates out of a valid region of a local planner, it
will fall into the valid region of some other planner.

To reduce the complexity of the search algorithm in BRM
and LQG-MP on roadmaps, it is assumed that the costs
on different edges of the roadmap are independent. This
heuristic can reduce the complexity of the algorithm, but
it may still be significantly high compared to the PRM or
FIRM. Moreover, this heuristic (edge-independent assump-
tion) is not true without having belief stabilizers, and thus
search algorithms relying on such a heuristic may result in
solutions arbitrarily different from the true solution of the
search algorithm. Assuming that no such heuristic is used

in the search algorithm, Table 2 summarizes the complexity
of these algorithms.

The huge reduction in the computational complexity of
the planning algorithm (in particular, in the online phase)
opens many possibilities in utilizing POMDP solvers in
real-world applications. Moreover, due to its sampling-
based nature, it ameliorates the curse of dimensionality just
as PRM does in the deterministic case. In other words, if
the dimension of the system increases, we need a greater
number of nodes N in the underlying PRM to capture the
free space connectivity, in which case we cannot use direct
methods due to their complexity. However, FIRM can tol-
erate the increase in the dimension since its complexity is
only a constant multiplier of the PRM complexity.

9.1. Limitations of the SLQG-FIRM and future
directions

In this section, we discuss limitations of the proposed
method. It is important to distinguish which limitation is
associated with the generic FIRM framework, and which
limitation is associated with the particular presented instan-
tiation of the FIRM, that is, the SLQG-FIRM. In some
cases, we also propose ways to remedy these limitations as
future research directions.

Stabilization time: The FIRM framework introduces the
usage of belief stabilizers. However, the time needed for the
belief stabilization procedure is added to the overall execu-
tion time. If the number of time steps along the nominal
path is l, and the number of time steps needed for stabiliza-
tion is τ , the extra time τ is usually negligible compared
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Fig. 9. A result of executing the FIRM plan for an eight-arm
manipulator in a light–dark (sensing) environment. The manipu-
lator is attached to the origin ( 0, 0) and the purple region is the
goal region for the manipulator tip. To unclutter the figure, we
only show the uncertainty of the manipulator tip (end-effector).
The initial mean and covariance are shown in black, and the evo-
lution of the tip covariance during the plan execution is shown in
red. The final estimation mean and the true configuration of the
manipulator are shown in blue and green, respectively. Obstacles
are shown in brown. The manipulator follows a longer but safer
path to the goal region through the left passage, compared to the
shorter but risky (with high collision probability) path through the
right passage.

to l. However, τ can increase as the sensing uncertainty
increases. In such a situation, one can consider two cases: if
obstacles are close to the robot, it is indeed unsafe to move
with a poor estimate, and it is indeed better to lose some
time to gain more information, and then start moving. On
the other hand, if there is no obstacle close to the robot,
then one can increase the size of the corresponding FIRM
node, and thus decrease the extra stopping time. Moreover,
efficient sampling-based methods, which are aware of avail-
able information at different locations of the environment,
and thus aware of the mean stabilization time, can be used
to efficiently sample the nodes in the locations with lower
mean stabilization times. These issues open up new direc-
tions for future research. However, if an application is very
sensitive to the extra time, FIRM may not be a good choice
for it, and methods such as BRM or LQG-MP can result in
better guarantees on execution time.

Controllability and observability: As mentioned in Sec-
tion 5, SLQG-FIRM works for systems that satisfy Property
1, which basically requires the linearized system about the
PRM nodes to be controllable and observable. Although
this includes a large class of systems, it excludes some

important systems, such as non-holonomic systems that
are not linearly controllable about any point. It is worth
noting that this is not a limitation of the generic FIRM
framework, but a limitation of the SLQG-FIRM. More
recent instantiations of FIRM, such as PLQG-based FIRM
(Agha-mohammadi et al., 2012c) or DFL-based FIRM
(Agha-mohammadi et al., 2012a), aim to relax the control-
lability requirements in Property 1 and thus can include
non-holonomic systems as well. However, relaxing the
observability assumption is still an open problem.

Gaussian beliefs: The reachability argument in the
SLQG-FIRM is restricted to Gaussian beliefs. In other
words, we cannot guarantee reachability to some pre-
defined non-Gaussian beliefs with SLQG controllers. This
issue is a subject of future research.

Increasing the uncertainty: Although it may rarely hap-
pen in practice, it is possible to have a situation that leads
to an uncertainty growth during the belief-stabilization pro-
cess. However, this issue can be addressed easily. Notice
that FIRM nodes are known a priori. Thus, at the begin-
ning of each stabilization procedure, we can compare the
current belief with the stationary belief of the stabilizer. If
the current belief has more information than the stationary
belief (e.g. if all eigenvalues of the estimation covariance
are strictly less than the corresponding eigenvalues of the
stationary estimation covariance), we replan from the cur-
rent belief based on Algorithm 2. Therefore, uncertainty
will not be increased during the stabilization procedure.

Locally linearizable systems: If a linear representation of
the system of interest cannot be obtained (e.g. if the system
state lives in a discrete set of states), the class of methods
that use the linearized system as a local approximation of
the true system will not work. In this case, another class
of methods can be adopted which can handle these systems
much better, such as those in Smith and Simmons (2005),
Kurniawati et al. (2008), and Kurniawati et al. (2011). Com-
ing up with belief stabilizers that work in discrete state
space settings to design a discrete-state variant of FIRM is
also an area for future research.

Velocity reduction in dynamical systems: To apply
SLQG-FIRM to dynamical systems, the underlying PRM
samples need to be selected from the equilibrium space, in
other words, they need to have zero velocity. As a result a
reduction in the system’s velocity is expected while trying
to reach the FIRM nodes. However, in many applications,
reducing the speed at nodes to gain the robustness, reli-
ability, and scalability offered by FIRM may be a useful
trade-off. Nevertheless, this reduction in speed may not be
desirable for some applications where the system cannot (or
should not) decrease its velocity. For such systems, Agha-
mohammadi et al. (2013a) propose a FIRM variant based
on periodic controllers which does not require a reduction
in the system’s velocity. However, designing more efficient
variants of FIRM that can sample points with non-zero
velocities without introducing periodicity in the system’s
motion is an interesting future research direction.

 at Texas A&M University - Medical Sciences Library on November 16, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


28 The International Journal of Robotics Research 0(0)

10. Conclusion

In this paper, we have proposed the FIRM framework for
solving the motion-planning problem under motion and
sensing uncertainties. This problem is originally a POMDP,
whose solution is computationally intractable. Exploiting
feedback controllers, we reduced it to a tractable FIRM
MDP that can be solved using standard DP techniques.
FIRM utilizes feedback controllers to create reachable node
regions in belief space. An important consequence is that
FIRM preserves the optimal substructure property on the
roadmap and thus overcomes the curse of history in the
original POMDP problem. Finally, by computing the col-
lision probabilities, obstacles are also appropriately taken
into account in planning on FIRM. We showed an instan-
tiation of the abstract FIRM framework using SLQG con-
trollers and illustrated the construction and planning results
on it. By extending the probabilistic completeness con-
cept to planners under uncertainty, we also showed that
FIRM is probabilistically complete under uncertainty. We
believe that FIRM provides an important step toward solv-
ing POMDPs and utilizing them as a practical tool for robot
motion planning under uncertainty.
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Appendices

A. Index to Multimedia Extensions

The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Executing the FIRM plan in the environment
shown in Figure 7

2 Video Real-time replanning with FIRM, which shows
the robustness of the method to large
disturbances

B. Time-varying LQG controller

The time-varying LQG controller is often used to track a
pre-planned trajectory (also called a nominal, desired, or
open-loop trajectory) in the presence of process and obser-
vation noise. In principal it is designed (and optimal) for
linear systems with Gaussian noise, but it can also be uti-
lized for stabilizing nonlinear systems locally around the
planned trajectory. An LQG controller is composed of a KF
as an estimator and an LQR as a controller. At every time
step k, the KF provides the a posteriori distribution (belief)
bk over the system state, and the LQR generates control uk

based on bk .
In this appendix, we first discuss the system lineariza-

tion and planned nominal trajectory, and then discuss the
KF, LQR, and LQG corresponding to this nominal trajec-
tory. Consider the nonlinear partially observable state-space
equations of the system as follows:

xk+1 = f ( xk , uk , wk) , wk ∼ N ( 0, Qk) (66a)

zk = h( xk , vk) , vk ∼ N ( 0, Rk) (66b)

A planned nominal trajectory for this system is a
sequence of planned states ( xp

k)k≥0 and planned controls
( up

k)k≥0 such that it is consistent with the noiseless dynam-
ics model; in other words, we have

xp
k+1 = f ( xp

k , up
k , 0) (67)

The planned trajectory can be a finite sequence of some
length N . The role of a closed-loop stochastic controller,
during the trajectory tracking, is to compensate for the
robot’s deviations from the planned trajectory and to keep
the robot close to the planned trajectory in the sense of
minimizing the following quadratic cost:

J =

E

[∑
k≥0

( xk − xp
k)T Wx( xk − xp

k)+( uk − up
k)T Wu( uk − up

k)

]
(68)

where Wx and Wu are positive-definite weight matrices for
the state and control costs, respectively.

Since the state space is not fully observable and is only
partially observable, we do not have access to the perfect
value of the state xk , and thus, we provide the estimate x+k
of the state xk based on the available observations z0:k from
the beginning up to the current time step. Then, based on the
separation principle (Kumar and Varaiya, 1986; Bertsekas,
2007), it can be shown that in a linear system with Gaus-
sian noise, the above minimization in terms of the error
xk − xp

k is equivalent to performing two separate minimiza-
tions based on the estimation error xk−x̂+k and the controller
error x̂+k − xp

k , whose summation is the same as the orig-
inal main error xk − xp

k = ( xk − x̂+k )+( x̂+k − xp
k), where

x̂+k = E[x+k ] = E[xk|z0:k]. As a major consequence, the
design of the stochastic controller with a partially observ-
able state space (LQG) reduces to designing a controller
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with a fully observable state (LQR) and designing an esti-
mator (KF), separately. In the following, we first discuss the
linearization of a nonlinear model. Then we discuss how a
KF and an LQR can be designed for this linearized system.
Finally, we combine them to construct a time-varying LQG
controller.

Model linearization: Given a nominal trajectory
( xp

k , up
k)k≥0, we linearize the dynamics and observation

model in Equation (66) as follows:

xk+1 = f ( xp
k , up

k , 0)+Ak( xk − xp
k)+Bk( uk − up

k)

+ Gkwk , wk ∼ N ( 0, Qk) (69a)

zk = h( xp
k , 0)+Hk( xk − xp

k)+Mkvk , vk ∼ N ( 0, Rk)
(69b)

where

Ak = ∂f

∂x
( xp

k , up
k , 0) , Bk = ∂f

∂u
( xp

k , up
k , 0) ,

Gk = ∂f

∂w
( xp

k , up
k , 0) , Hk = ∂h

∂x
( xp

k , 0) ,

Mk = ∂h

∂v
( xp

k , 0) (70)

Now, let us define the following errors:

• LQG error (main error): ek = xk − xp
k

• KF error (estimation error): ẽk = xk − x̂+k
• LQR error (estimation of LQG error): ê+k = x̂+k − xp

k

Note that these errors are linearly dependent: ek = ê+k +
ẽk . Also, defining δuk = uk − up

k and δzk = zk − zp
k :=

zk − h( xp
k , 0), we can rewrite the above linearized models as

follows:

ek+1 = Akek + Bkδuk + Gkwk (71a)

δzk = Hkek +Mkvk (71b)

KF: In Kalman filtering, we aim to provide an estimate of
the system’s state based on the available partial information
we have obtained up to time k, that is, z0:k . The state esti-
mate is a random vector denoted by x+k , whose distribution
is the conditional distribution of the state on the obtained
observations so far, which is called belief and is denoted
by bk :

bk = p( x+k )= p( xk |z0:k) (72)

x̂+k = E[xk|z0:k] (73)

Pk = C[xk|z0:k] (74)

where E[·|·] and C[·|·] are the conditional expectation and
conditional covariance operators, respectively. In the Gaus-
sian case, we have bk = N ( x̂+k , Pk); in other words, the
belief can be characterized only by its mean and covariance,
that is, bk ≡ ( x̂+k , Pk).

Kalman filtering consists of two steps at every time stage:
a prediction step and an update step. In the prediction step,
the mean and covariance of prior x−k are computed. For the
system in Equation (71), the prediction step is

ê−k+1 = Ak̂e+k + Bkδuk (75)

P−k+1 = AkP+k AT
k + GkQkGT

k (76)

In the update step, the mean and covariance of posterior x+k
are computed. For the system in Equation (71), the update
step is

Kk = P−k HT
k ( HkP−k HT

k +MkRkMT
k )−1 (77)

ê+k+1 = ê−k+1 + Kk+1( δzk+1 − Hk+1̂e−k+1) (78)

P+k+1 = ( I − Kk+1Hk+1) P−k+1 (79)

Note that

x̂+k = E[xk|z0:k] = xp
k + ê+k = xp

k + E[ek|z0:k] (80)

Pk = C[xk|z0:k] = P+k = C[ek|z0:k] (81)

LQR controller: Once we obtain the belief from the filter,
a controller can generate an optimal control signal accord-
ingly. In other words, we have a time-varying mapping μk

from the belief space into the control space that generates
an optimal control based on the given belief uk = μk( bk) at
every time step k. The LQR controller is of this kind and it
is optimal in the sense of minimizing the following cost:

JLQR =

E

[∑
k≥0

( x̂+k − xp
k)T Wx( x̂+k − xp

k)+( uk − up
k)T Wu( uk − up

k)

]

= E

[∑
k≥0

( ê+k )T Wx( ê+k )+ ( δuk)T Wu( δuk)

]
(82)

The linear control law that minimizes this cost function for
a linear system is of the form

δuk = −Lk̂e+k (83)

where the time-varying feedback gains Lk can be computed
recursively as follows:

Lk = ( BT
k Sk+1Bk +Wu)−1 BT

k Sk+1Ak (84)

Sk = Wx + AT
k Sk+1Ak − AT

k Sk+1BkLk (85)

If the nominal path is of length N , then SN = Wx

is the initial condition of the above recursion, which is
solved backwards in time. Note that the full control is
uk = up

k + δuk .
LQG controller: Plugging the obtained LQR control law

into the Kalman filtering equations, we obtain the following
error dynamics for the defined errors:(

ek+1

ẽk+1

)
=

(
Ak − BkLk BkLk

0 Ak − Kk+1Hk+1Ak

)(
ek

ẽk

)
+

(
Gk 0

Gk − Kk+1Hk+1Gk −Kk+1Mk+1

)(
wk

vk+1

)
(86)

or equivalently,(
ek+1
ê+k+1

)
=

(
Ak −BkLk

Kk+1Hk+1Ak Ak − BkLk − Kk+1Hk+1Ak

)(
ek
ê+k

)
+

(
Gk 0

Kk+1Hk+1Gk Kk+1Mk+1

)(
wk

vk+1

)
(87)
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Defining ζk := ( ek , ê+k )T and qk := ( wk , vk+1)T, we can
rewrite Equation (87) in a more compact form as

ζk+1 = Fkζk + Gkqk , qk ∼ N ( 0, Qk) ,

Qk =
(

Qk 0
0 Rk+1

)
(88)

with appropriate definitions for Fk and Gk .
The above equation, along with the equation on estima-

tion covariance propagation,

Pk+1 = ( I − Kk+1Hk+1) ( AkPkAT
k + GkQkGT

k ) (89)

characterize the evolution of state xk and belief bk ≡
( x̂+k , Pk) under the time-varying LQG controller.

C. SLQG controller

The SLQG controller is often used to regulate (or stabilize)
the system state to a pre-planned point (also called the set-
point, nominal, or desired point) in the presence of process
and observation noise. In principal it is designed (and opti-
mal) for linear systems with Gaussian noise, but it can also
be utilized for stabilizing nonlinear systems locally around
the planned point. The SLQG controller is composed of a
stationary Kalman filter (SKF) as an estimator and a sta-
tionary linear quadratic regulator (SLQR) as a controller.
At every time step k, the SKF provides the a posteriori dis-
tribution (belief) bk over the system state, and the SLQR
generates control uk based on bk .

In this appendix, we first discuss the system linearization
around the planned point, and then discuss the SKF, SLQR,
and SLQG corresponding to this nominal point. Consider
the nonlinear partially observable state-space equations of
the system as follows:

xk+1 = f ( xk , uk , wk) , wk ∼ N ( 0, Qk) (90a)

zk = h( xk , vk) , vk ∼ N ( 0, Rk) (90b)

and consider a planned state point xp, to whose vicinity
the controller has to drive the system. If the system state
reaches the point xp, it is assumed that the system remains
there with zero control, up = 0, in other words,

xp = f ( xp, 0, 0) (91)

The role of a closed-loop stochastic controller during the
state regulation is to compensate for robot deviations from
the desired point due to noise effects, and to drive the robot
close to the desired point in the sense of minimizing the
following quadratic cost:

J = E

[∑
k≥0

( xk − xp)T Wx( xk − xp)+( uk)T Wu( uk)

]
(92)

where Wx and Wu are positive-definite weight matrices for
the state and control costs, respectively.

Again, similar to the time-varying case, since we only
have imperfect information about the state xk , we have to
make the estimate x+k about the state based on the avail-
able observations z0:k . Accordingly, the controller gener-
ates the control signal based on the estimated value of the
state; i.e., belief. Based on the separation principle (Bert-
sekas, 2007), in a linear system with Gaussian noise, min-
imization of the cost in Equation (92) is equivalent to per-
forming two separate minimizations that lead to the sep-
arate design of the SKF and SLQR. In the following, we
first discuss the linearization of a nonlinear model, and then
we discuss how the SKF and the SLQR can be designed
for this linearized system, and finally, we combine them to
construct an SLQG controller.

Model linearization: Given a desired point xp, we lin-
earize the dynamics and observation model in Equation (90)
as follows:

xk+1 = f ( xp, 0, 0)+As( xk − xp)+Bs( uk − 0)

+Gswk , wk ∼ N ( 0, Qs) (93a)

zk = h( xp, 0)+Hs( xk − xp)+Msvk , vk ∼ N ( 0, Rs)

(93b)

where

As = ∂f

∂x
( xp, 0, 0) , Bs = ∂f

∂u
( xp, 0, 0) , Gs = ∂f

∂w
( xp, 0, 0)

Hs = ∂h

∂x
( xp, 0) , Ms = ∂h

∂v
( xp, 0) (94)

Now, let us define the following errors:

• SLQG error (main error): ek = xk − xp

• SKF error (estimation error): ẽk = xk− x̂+k , where x̂+k =
E[x+k ] = E[xk|z0:k]

• SLQR error (estimation of SLQG error): ê+k = x̂+k − xp

Note that these errors are linearly dependent: ek = ê+k + ẽk .
Defining δuk := uk and δzk := zk − zp = zk − h( xp, 0), we
can rewrite the above linearized models as follows:

ek+1 = Asek + Bsδuk + Gswk (95a)

δzk = Hsek +Msvk (95b)

SKF: In SKF, we aim to provide an estimate of the sys-
tem’s state based on the available partial information we
have obtained up to time k, that is, z0:k . The state esti-
mate is a random vector denoted by x+k , whose distribution
is the conditional distribution of the state on the obtained
observations so far, which is called belief and is denoted by
bk = p( x+k )= p( xk|z0:k). In the Gaussian case, the belief
can only be characterized by its mean and covariance, that
is, bk ≡ ( x̂+k , Pk). Thus, in the Gaussian case, we can write

bk = p( x+k )= p( xk |z0:k)= N ( x̂+k , Pk)⇔ bk ≡ ( x̂+k , Pk)
(96)

x̂+k = E[xk|z0:k], Pk = C[xk|z0:k] (97)
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where E[·|·] and C[·|·] are the conditional expectation and
conditional covariance operators, respectively.

SKF consists of two steps at every time stage: a predic-
tion step and an update step. In the prediction step, the mean
and covariance of prior x−k are computed. For the system in
Equation (95) the prediction step is

ê−k+1 = Aŝe
+
k + Bsδuk (98)

P−k+1 = AsP
+
k AT

s + GsQsG
T
s (99)

In the update step, the mean and covariance of posterior x+k
are computed. For the error system in Equation (95), the
update step is

Kk = P−k HT
s ( HsP

−
k HT

s +MsRsM
T
s )−1 (100)

ê+k+1 = ê−k+1 + Kk+1( δzk+1 − Hŝe
−
k+1) (101)

P+k+1 =( I − Kk+1Hs) P−k+1 (102)

Note that

x̂+k = xp + ê+k , Pk = P+k (103)

In SKF, if ( As, Hs) is an observable pair and ( As, Q̌s) is a
controllable pair, where GsQsGT

s = Q̌sQ̌T
s , then the prior

and posterior covariances P−k and Pk and the filter gain Kk

all converge to their stationary values, denoted by P−s , Ps,
and Ks, respectively (Bertsekas, 2007). P−s can be computed
by solving the following DARE in Equation (104). Having
P−s , the stationary gain Ks and estimation covariance Ps are
computed as follows:

P−s = GsQsG
T
s

+ As( P−s − P−s HT
s ( HsP

−
s HT

s +MsRsM
T
s )−1 HsP

−
s ) AT

s
(104)

Ks = P−s HT
s ( HsP

−
s HT

s +MsRsM
T
s )−1 (105)

Ps = ( I − KsHs) P−s (106)

SLQR controller: In the SLQR we have a stationary map-
ping μs from the belief space to the control space that
generates an optimal control based on the given belief uk =
μs( bk) at every time step k. The SLQR controller is optimal
in the sense of minimizing the following cost:

JSLQR = E

[∑
k≥0

( x̂+k − xp)T Wx( x̂+k − xp)+( uk)T Wu( uk)

]

= E

[∑
k≥0

( ê+k )T Wx( ê+k )+( δuk)T Wu( δuk)

]
(107)

If ( As, Bs) is a controllable pair and ( As, W̌x) is an observ-

able pair, where W̌x
T
W̌x = Wx, then the stationary linear

control law that minimizes the cost function JSLQR for a
linear system is of the form

δuk = −Lŝe
+
k (108)

where the stationary feedback gain Ls can be computed as
follows:

Ls = ( BT
s SsBs +Wu)−1 BT

s SsAs (109)

Ss = Wx + AT
s SsAs − AT

s SsBsLs (110)

where the second equation is indeed a DARE that can be
efficiently solved for Ss. Plugging Ss into Equation (109),
we get the feedback gain Ls.

SLQG controller: Plugging the obtained control law of
SLQR into the SKF equations, we can get the following
stationary dynamics for the defined errors:(

ek+1

ẽk+1

)
=

(
As − BsLs BsLs

0 As − KsHsAs

)(
ek

ẽk

)
+

(
Gs 0

Gs − KsHsGs −KsMs

)(
wk

vk+1

)
(111)

or equivalently,(
ek+1

ê+k+1

)
=

(
As −BsLs

KsHsAs As − BsLs − KsHsAs

)(
ek

ê+k

)
+

(
Gs 0

KsHsGs KsMs

)(
wk

vk+1

)
(112)

Defining ζk := ( ek , ê+k )T and qk := ( wk , vk+1)T, we can
rewrite Equation (112) in a more compact form as

ζk+1 = Fsζk + Gsqk , qk ∼ N ( 0, Qs) , Qs =
(

Qs 0
0 Rs

)
(113)

with appropriate definitions for Fs and Gs.
It can be shown that if Fs is a stable matrix (i.e.

limκ→∞( Fs)κ = 0), ζk converges i.d. to ζs ∼ N ( 0,Ps).
Stationary covariance Ps is the solution of the following
Lyapunov equation:

Ps = FsPsF
T
s + GsQsG

T
s (114)

Note that Ps can be decomposed into four blocks,

Ps =
(
Ps,11 Ps,12

Ps,21 Ps,22

)
(115)

such that Ps,11 = limk→∞C[ek] and Ps,22 =
limk→∞C[̂e+k ]. Therefore, since x̂+k = xp + ê+k , the estima-
tion mean also converges to a stationary random variable,
denoted by x̂+s :

x̂+s := lim
k→∞

x̂+k ∼ N ( xp,Ps,22) (116)

Due to the linear relation ek = ê+k + ẽk , we can also
conclude limk→∞ C[̃ek] = Ps,11 + Ps,22 − 2Ps,12. It can be
proven that in SLQG, the stability of matrix Fs is a direct
consequence of the controllability of pair ( As, Bs) and the
observability of pair ( As, Hs) (Bertsekas, 1976, 2007).
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Thus, collecting all the conditions, if ( As, Bs) and
( As, Q̌s) are controllable pairs, where GsQsGT

s = Q̌sQ̌T
s ,

and if ( As, Hs) and ( As, W̌x) are observable pairs, where
Wx = W̌ T

x W̌x, then the belief bk converges in distribution
to a stationary belief under the SLQG:

bs := lim
k→∞

bk = N ( x̂+s , P+s ) (117)

where P+s is a deterministic quantity and we can character-
ize the distribution over the stationary belief as

bs ≡ ( x̂+s , P+s )∼ N
((

xp

P+s

)
,

(
Ps,22 0

0 0

))
(118)

D. Proof of Lemma 3

Proof. Let us consider the state-space model of the linear
system of interest as follows:

xk+1= Axk + Buk +Gwk , wk ∼ N ( 0, Q) (119a)

zk= Hxk + vk , vk ∼ N ( 0, R) (119b)

Based on Lemma 1, if ( A, B) and ( A, Q̌) are controllable
pairs, where GQGT = Q̌Q̌T, and if ( A, H) and ( A, W̌x) are
observable pairs, where Wx = W̌T

x W̌x, then the estimation
covariance deterministically tends to a stationary covari-
ance Ps. Therefore, for any ε > 0, after a deterministic
finite time, Pk enters the ε-neighborhood of the stationary
covariance, denoted by Ps.

The estimation mean dynamics, however, are stochastic
and are as follows for the system in Equation (119):

x̂+k+1 = v+( A− BL−Kk+1HA) ( x̂+k − v)

+Kk+1HA( xk − v)+Kk+1HGwk +Kk+1vk+1

= v−( A− BL) v+( A− BL−Kk+1HA) x̂+k
+Kk+1HAxk +Kk+1HGwk +Kk+1vk+1 (120)

where the Kalman gain Kk is

Kk = P−k HT ( HP−k HT + R)−1 (121)

Since K is full rank (due to the condition on the rank of H),
and since v and w represent Gaussian noise, Equation (120)
induces an irreducible Markov process over the state space
(Meyn and Tweedie, 2009). Thus, if we have a stopping
region for the estimation mean with size ε > 0, the esti-
mation mean process will hit this stopping region in finite
time (Meyn and Tweedie, 2009), with probability one.

Based on the estimation mean dynamics in Equation
(120) and the state dynamics in Appendix C, in the absence
of a stopping region, if the estimation mean process and
state process start from x̂+0 and x0 respectively, such that
E[̂x+0 ] = v and E[x0] = v (which indeed is the case in
FIRM due to the usage of edge controllers), ‘the mean of
estimation mean’ remains on v. That is, E[̂x+k ] = v, for
all k. As a result, if we center the stopping region for the

estimation mean at v, the probability of hitting the stopping
region is maximized and the stopping time is minimized.

Combining the results for estimation covariance and esti-
mation mean, if we define the region B as a set in the
Gaussian belief space with a non-empty interior centered
at ( v, Ps), the belief bk ≡ ( x̂+k , Pk) enters region B in finite
time with probability one. Thus, the pair ( B, μ) is a proper
pair over GB; in other words, B is reachable under μ starting
from any Gaussian distribution.

E. Proof of Lemma 4

Before proving Lemma 4, we state and prove the following
lemma.

Lemma 5. Consider the bounded function 0 ≤ f (X )≤ 1,
and kernel k(X ′,X )≥ 0. Then, for any set A, we have

‖
∫
A

k(X ′,X ) f (X ′) dX ′‖ ≤ ‖
∫
A

k(X ′,X ) dX ′‖ (122)

Proof. Given the properties of f (·) and k( ·, ·), we have
k(X ′,X ) f (X ′)≤ k(X ′,X ), for all X and X ′. Taking
the integral from both sides with respect to X ′ and then
taking the supremum norm with respect to X , the result
follows.

Now we prove Lemma 4.

Proof. If we denote the domain of operator TS by D, we
know that for all f ∈ D we have 0 ≤ f (X )≤ 1, because
f (X ) is the probability of reaching given set S under some
given controller invoked at point X . Thus, it cannot be
negative or greater than one, and based on Lemma 5, we
have

TS [f ] =
∫
S

pμ(X ′|X ) f (X ′) dX ′

≤
∫
S

pμ(X ′|X ) dX ′ = P1(S|X , μ)≤ 1

(123)

Therefore, based on the definition of operator norm, we
have

‖TS‖op = sup
f (·)
{‖TS [f ]‖ : ∀f ∈ D, ‖f ‖ ≤ 1} ≤ 1 (124)

According to Assumption 1, there exists a finite number N
such that

inf
X

Pn(S|X , μ)= β > 0 ∀n > N (125)

where ‘inf’ and ‘sup’ denote the infimum and supremum,
respectively. Thus, we have

‖Pn(S|X , μ) ‖ = sup
X

( 1− Pn(S|X , μ))

= 1− inf
X

Pn(S|X , μ)

= 1− β < 1 ∀n > N (126)
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Let us denote the nth iterated kernel of TS as
pn(X ′|X , μ). Since this iterated kernel is a pdf, we have
pn(X ′|X , μ)≥ 0, ∀X ,∀X ′,∀n. We can write

‖TN
S [f ] ‖ = ‖

∫
S

pN (X ′|X , μ) f (X ′) dX ′‖

≤ ‖
∫
S

pN (X ′|X , μ) dX ′‖ = ‖PN (S|X , μ) ‖ ≤ α < 1

(127)

where α = 1 − β, and similar to Equation (124), we get
‖TN

S‖op ≤ α < 1. From the operator norm properties, we
have

‖TN+1
S ‖op ≤ ‖TN

S‖op‖TS‖op ≤ α < 1

and similarly for all n ≥ N , we have

‖Tn
S‖op ≤ α < 1 ∀n ≥ N

Now, consider the series:
∑∞

i=1 ‖Tn
S‖op. We can split the

sum into smaller pieces as follows:

∞∑
n=1

‖Tn
S‖op =

N∑
n=1

‖Tn
S‖op +

∞∑
i=1

(i+1)N∑
n=iN+1

‖Tn
S‖op

But because ‖Tn+1
S ‖op ≤ ‖Tn

S‖op for all n ≥ N , we have

(i+1)N∑
n=iN+1

‖Tn
S‖op ≤ N‖TiN

S ‖op

Also, we know

‖TiN
S ‖op ≤ ‖TN

S‖i
op ≤ αi

and thus, we have

∞∑
n=1

‖Tn
S‖op =

N∑
n=1

‖Tn
S‖op︸ ︷︷ ︸

≤N

+
∞∑

i=1

(i+1)N∑
n=iN+1

‖Tn
S‖op

≤ N +
∞∑

i=1

Nαi = N + N

1− α
= c <∞

F. Proof of Corollary 1

Proof. We know ‖R‖ ≤ 1, and thus we can write

‖
∞∑

n=0

Tn
S [R]‖ ≤

∞∑
n=0

‖Tn
S‖op‖R‖ ≤

∞∑
n=0

‖Tn
S‖op ≤ c <∞

Thus, series
∑∞

n=0 Tn
S [R] is a convergent series and we can

define the operator ( I−TS )−1 [R] =∑∞
n=0 Tn

S [R]. We have

‖( I − TS )−1 ‖op = ‖
∞∑

n=0

Tn
S‖op ≤ c <∞ (128)

G. Proof of Proposition 1

We first state and prove the following lemma on the con-
tinuity of the transition probability in the local controller’s
parameter.

Lemma 6. Given Assumption 2, there exists a c2 <∞ such
that

‖p(X ′|X , μ( b; v) )− p(X ′|X , μ̌( b; v̌) ) ‖ ≤ c2‖v− v̌‖
(129)

Proof. The result directly follows by combining the two
parts of Assumption 2.

Now we are ready to prove Proposition 1.

Proof. To show P(B|X , μ) is continuous in v, we perturb
v to some v̌, such that ‖v − v̌‖ < r. The local controller
associated with node v̌ is referred to as μ̌, whose success-
ful absorption region is denoted by B̌ and whose stopping
region is Š . Similarly, the corresponding transient operator
and recurrent function are referred to as ŤŠ and Ř respec-
tively. Finally, the success probability associated with the
perturbed node v̌ is P( B̌|X , μ̌). To shorten the statements,
we refer to P(B|X , μ) and P( B̌|X , μ̌) respectively as P(X )
and P̌(X ). As a result of node perturbation, the success
probability is perturbed as

P(B|X , μ)−P( B̌|X , μ̌):=P−P̌= R+TS [P]−Ř−ŤŠ [P̌]

= R−Ř+TS [P]−TS [P̌]+TS [P̌]−TŠ [P̌]+TŠ [P̌]−ŤŠ [P̌]

= ( R−Ř)+TS [P − P̌]+( TS−TŠ ) [P̌]+( TŠ−ŤŠ ) [P̌]

where

TŠ [f (·) ] (X ) :=
∫
Š

pμ(X ′|X ) f (X ′) dX ′ (130)

Let us define the operators T�S := ( TS−TŠ ) and �TŠ :=
( TŠ − ŤŠ ). Now, based on Corollary 1, we can write

P− P̌ = ( I − TS )−1
[
R− Ř+ T�S [P̌]+�TŠ [P̌]

]
(131)

and thus the following inequality holds on the supremum
norm of the perturbation of the absorption probability:

‖P− P̌‖
≤ ‖( I−TS )−1 ‖op

(
‖R− Ř‖+‖T�S [P̌]‖+‖�TŠ [P̌]‖

)
≤ c

(
‖R− Ř‖ + ‖T�S [P̌]‖ + ‖�TŠ [P̌]‖

)
= c (‖K1(X ) ‖ + ‖K2(X ) ‖ + ‖K3(X ) ‖) (132)

where K1(X ) := R(X )−Ř(X ), K2(X ) := T�S [P̌(·) ](X ),
and K3(X ) := �TŠ [P̌(·) ](X ). In the following we bound

K1, K2, and K3, and thus bound ‖P− P̌‖, accordingly.
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G.1. Bound for K1(X )

The supremum norm of K1(X ) is

‖K1(X ) ‖ = ‖R(X )− Ř(X ) ‖
= ‖

∫
B

pμ(X ′|X ) dX ′ −
∫
B̌

pμ̌(X ′|X ) dX ′‖

= ‖
∫

B∩B̌

[pμ(X ′|X )−pμ̌(X ′|X ) ] dX ′

+
∫

B−B̌

pμ(X ′|X ) dX ′ −
∫

B̌−B

pμ̌(X ′|X ) dX ′‖

≤
∫

B∩B̌

‖pμ(X ′|X )−pμ̌(X ′|X ) ‖ dX ′

+ ‖
∫

B−B̌

pμ(X ′|X ) dX ′ +
∫

B̌−B

pμ̌(X ′|X ) dX ′‖

from (129)≤
∫

B∩B̌

c2‖v− v̌‖dX ′ + ‖P1(B � B̌|X , μ) ‖

+ ‖P1( B̌ � B|X , μ̌) ‖
from (50)≤ c′2‖v− v̌‖ + 2c′‖v− v̌‖ = γ1‖v− v̌‖ (133)

where c′2 < ∞ and γ1 = c′2 + 2c′ < ∞. In the penulti-
mate inequality, we also used the fact that P1( B̌−B|X , μ̌)≤
P1( B̌ � B|X , μ̌) and P1(B − B̌|X , μ)≤ P1(B � B̌|X , μ)
because B̌ − B ⊆ B̌ � B and B − B̌ ⊆ B � B̌.

G.2. Bound for K2(X )

We have

‖K2(X ) ‖ = ‖T�S [P̌]‖ = ‖TS [P̌]− TŠ [P̌]‖
= ‖

∫
S

pμ(X ′|X ) P̌(X ′) dX ′ −
∫
Š

pμ(X ′|X ) P̌(X ′) dX ′‖

=‖
∫

S−Š

pμ(X ′|X ) P̌(X ′) dX ′ −
∫

Š−S

pμ(X ′|X ) P̌(X ′) dX ′‖

≤‖
∫

S−Š

pμ(X ′|X ) P̌(X ′) dX ′ +
∫

Š−S

pμ(X ′|X ) P̌(X ′) dX ′‖

=‖
∫

S�Š

pμ(X ′|X ) P̌(X ′) dX ′‖ from (122)≤ ‖
∫

S�Š

pμ(X ′|X ) dX ′‖

= ‖P1(S � Š|X , μ) ‖ ≤ ‖P1(B � B̌|X , μ) ‖

= ‖P1(B � B̌|X , μ) ‖ from (50)≤ γ2‖v− v̌‖ (134)

where γ2 = c′ < ∞. The penultimate inequality and
equality follow from the relations S � S ′ ⊆ B � B′ and
B � B′ = B � B′, respectively.

G.3. Bound for K3(X )

We have

‖K3(X ) ‖ = ‖�TŠ [P̌]‖ = ‖TŠ [P̌]− ŤŠ [P̌]‖
= ‖

∫
Š

pμ(X ′|X ) P̌(X ′) dX ′ −
∫
Š

pμ̌(X ′|X ) P̌(X ′) dX ′‖

= ‖
∫
Š

(
pμ(X ′|X )−pμ̌(X ′|X )

)
P̌(X ′) dX ′‖

≤
∫
Š

‖pμ(X ′|X )−pμ̌(X ′|X ) ‖‖P̌(X ′) ‖ dX ′

from (129)≤
∫
Š

c2‖v− v̌‖ dX ′ = γ3‖v− v̌‖ (135)

where γ3 <∞.
Therefore, based on Equations (132)–(135), we can con-

clude that

‖P(B|X , μ)−P( B̌|X , μ̌) ‖ ≤ γ ‖v− v̌‖ (136)

where γ = c( γ1 + γ2 + γ3) < ∞, which completes the
proof that the absorption probability under the controller μ

is continuous in the PRM node v.

H. Proof of Theorem 1

Before starting the proof of Theorem 1, we state the follow-
ing proposition that concludes the continuity of the success
probability of π (overall planner) given the continuity of the
success probability of μij (the individual local planners).

Proposition 2. (Continuity of success probability of π ) The
success probability P( success|b0, π ) is continuous in V if
the absorption probabilities P( Bj|b, μij) are continuous in
vj for all i, j, and b.

Proof. Given that P( Bj|b, μij) is continuous in vj, for all
i, j, we want to show that P( success|π , b0) is continuous
in all vj. First, let us look at the structure of the success
probability:

P( success|b0, π )= P(B( μ0) |b0, μ0) P( success|B( μ0) , πg)
(137)

where μ0 is computed using Equation (34). The term
P( B( μ0) |b0, μ0) on the right-hand side of Equation (137)
is continuous because the continuity of P( Bj|b, μij) for all
i, j is assumed in this proposition. Thus, we only need to
show the continuity of the second term in Equation (137).
Without loss of generality we can consider Bi = B( μ0).
Then, we need to show that P( success|Bi, πg) is continuous
in vi for all i.

As we saw in Section 6.7, the probability of success from
the ith FIRM node is as follows:

P( success|Bi, πg)= �T
i ( I −Q)−1 Rg (138)
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Moreover, we can consider Bgoal = BN without loss of gen-
erality; then, the ( i, j)th element of matrix Q is Q[i, j] =
P( Bi|Bj, πg( Bj) ), and the jth element of vector Rg is
Rg[j] = P( BN |Bj, πg( Bj) ).

Since we considered Bj as the stopping region of the local
controller μij, we have

P( Bj|Bi, μil)= 0, if l �= j (139)

Therefore, all non-zero elements in the matrices Rg and
Q are of the form P( Bj|Bi, μij). Thus, given the continu-
ity of P( Bj|b, μij), the transition probability P( Bj|Bi, μij)
is continuous and the matrices Rg and Q are continuous.
Therefore, P( success|Bi, πg) and thus P( success|b0, π ) are
continuous in underlying PRM nodes.

Now we are ready to prove Theorem 1.

Proof. Based on the definition of probabilistic complete-
ness under uncertainty, if there exists a successful policy
π̌ , FIRM has to find a successful policy π as the num-
ber of FIRM nodes increases unboundedly. Thus, we start
by assuming that there exists a successful policy π̌ ∈ �

for a given initial belief b0. Since each policy in � is
parametrized by a PRM graph, there exists a PRM with
nodes V̌ = {v̌i}Ni=1 that parametrizes the policy π̌ . Since
π̌ is a successful policy, we know P( success|b0, π̌ ) > pmin.
Thus, we can define ε∗ = P( success|b0, π̌ )−pmin > 0.

Given Assumptions 1, 2, and 3, and based on
Propositions 1 and 2, we know that P( success|b0, π )
is continuous with respect to the parameters of the
local planners. In other words, for any ε > 0, there
exists a δ > 0 such that if ‖V − V̌‖ < δ, then
|P( success|b0, π ( ·;V))−P( success|b0, π̌ ( ·; V̌)) | < ε. The
notation ‖V − V̌‖ < δ means that ‖vi− v̌i‖ < δ, for all i, or
equivalently, vi ∈ �̌i, for all i, where �̌i is a ball with radius
δ, centred at v̌i.

Therefore, for the introduced ε∗, there exists a δ∗ and
corresponding regions {�̌i}Ni=1 such that if we have a PRM
whose nodes (or a subset of whose nodes: a subset of
nodes is sufficient, because the success probability is a non-
decreasing function in terms of the number of nodes) satisfy
the condition v∗i ∈ �̌i for all i = 1, . . . , N , then the plan-
ner π parametrized by this PRM has a success probability
greater than pmin, that is, P( success|b0, π ( ·;V)) > pmin, and
hence π is successful.

Since δ > 0, the regions �̌i have non-empty interiors.
Consider a PRM with a sampling algorithm under which
there is a non-zero probability of sampling in �̌i, such
as uniform sampling. Then, starting with any PRM, if we
increase the number of nodes, a PRM node will eventually
be chosen at every �̌i with probability one. Therefore the
policy constructed based on these nodes will have a success
probability greater than pmin; in other words, we eventu-
ally get a successful policy if one exists. Thus, FIRM is
probabilistically complete under uncertainty.
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