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Abstract— Motion planning in belief space (under motion and
sensing uncertainty) is a challenging problem due to the compu-
tational intractability of its exact solution. The Feedback-based
Information RoadMap (FIRM) framework made an important
theoretical step toward enabling roadmap-based planning in
belief space and provided a computationally tractable version
of belief space planning. However, there are still challenges in
applying belief space planners to physical systems, such as the
discrepancy between computational models and real physical
models. In this paper, we propose a dynamic replanning scheme
in belief space to address such challenges. Moreover, we present
techniques to cope with changes in the environment (e.g.,
changes in the obstacle map), as well as unforeseen large
deviations in the robot’s location (e.g., the kidnapped robot
problem). We then utilize these techniques to implement the
first online replanning scheme in belief space on a physical
mobile robot that is robust to changes in the environment and
large disturbances. This method demonstrates that belief space
planning is a practical tool for robot motion planning.

I. INTRODUCTION

Sequential decision making under uncertainty is a key
prerequisite for many robotics applications. Consider an
autonomous, low-cost mobile robot that is subject to motion
noise and lacks exact measurements due to sensor noise.
Controlling this robot and planning motions for it is an in-
stance of the Partially-Observable Markov Decision Process
(POMDP) [13], [23] problem, which is a formal framework
for sequential decision making under uncertainty. However,
the POMDP problem is also notorious for its computational
intractability. Methods such as [11], [15], [18], [24], [25]
reduce the computation burden of POMDPs and aim to
solve more challenging and realistic problems. Recently, the
Feedback-based Information RoadMap (FIRM) framework
[3] takes an important theoretical step toward realistic scenar-
ios by significantly reducing the computational complexity
of planning under uncertainty.

Additionally, handling changes in the environment (e.g.,
obstacles), changes in the goal location, and large deviations
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Fig. 1. (a) A picture of robot (iRobot Create) in the operating environment.
Landmarks can be seen on the walls. (b) Floorplan of the environment, in
which experiments are conducted.

in the robot’s location calls for online planning in uncertain,
partially observable environments. However, when dealing
with real-world physical systems, POMDP-based methods,
including FIRM, encounter another important challenge:
discrepancy between real models with the models used for
computation. Such discrepancies can lead to deviations from
the desired plan. Moreover, changes in the environment and
large disturbances are other important challenges that needs
to be handled. One strategy to address this problem is an
ability to dynamically replan in belief space. In this paper,
we propose a principled rollout-based extension of FIRM
planning to facilitate its application to real-time stochastic
(re)planning problems, and deal with changes in the envi-
ronment and large disturbances in the robot’s state.

In the main body of POMDP literature, in particular
sampling-based methods, the computed solution depends on
the initial belief [4], [7], [9], [14], [21], [28] (sometimes
referred to as single-query solvers). Therefore, in replanning
(planning from a new initial belief) almost all the compu-
tations need to be done again, which prohibits their usage
in cases where real-time dynamic replanning schemes, such
as Receding Horizon Control (RHC), are needed. However,
multi-query methods such as FIRM [2], [3] provide a con-
struction mechanism independent of the initial belief of the
system. As a result, they are suitable methods to be used for
dynamic replanning purposes.

Trajectory optimization-based methods can also be used
for replanning in an RHC scheme. The RHC framework was



originally designed for deterministic systems. The most com-
mon approach is to approximate the stochastic system with a
deterministic one by replacing the uncertain quantities with
their mean (or maximum likelihood) values [5]. Methods
such as [8], [10], [12], [20], [27] fall into this category and
can be used in the RHC setting; they replace future random
observations with their deterministic maximum likelihood
value. However, in this form of RHC, the optimization is
carried out only within a limited horizon. Also, removing
the system’s stochasticity may lead to unreliable plans.
The main contributions of this paper are threefold.

« We propose a principled method for real-time replan-
ning in belief space by extending the idea of the rollout
policy [5] to belief space using FIRM. This method
considers all possible future observations.

o We propose techniques such as a “lazy feedback evalu-
ation” algorithm to react to changes in the environment
as well as large disturbances.

e We implement the proposed belief space planning
scheme on a physical robotic system as an application
of the FIRM framework. We demonstrate the robustness
of the method to changes in the environment, failures
in the sensory system, and large deviations.

These results lay the groundwork for further application of
the theoretical POMDP framework to practical applications,
thus moving toward long-term autonomy in robotic systems.

II. PROBLEM STATEMENT AND TARGET APPLICATION

We aim to design a belief space planner that can han-
dle uncertainties associated with a typical low-cost robot.
Moreover, the planner needs to be able to replan in real-
time so that it can cope with changes in the environment as
well as deviations resulting from model discrepancies, large
disturbances, and sensor failures.

To formally define the problem, we start by defining the
concept of belief and policy. Consider a system whose state,
control, and motion noise are denoted by x, ug, and wy,
respectively, at the k-th time step. Let us denote the state
evolution model by zp+1 = f(zk,ur, wg). In a partially
observable environment, the exact value of system state xy
is not known. However, we can get the measurement (or
observation) vector zj, at the k-th time step through sensors.
Let us denote the measurement model by z, = h(zg,vg),
where vy, denotes sensing noise. Therefore, the only available
data for decision making at the k-th time step are the
observations we have received and the controls we have
applied up to that time step, i.e., Hr = {20k, Uo:k—1} =
{20,21,"** , 2k, U0, "+ ,Ug—1}. A filtering module can en-
code this data into a probability distribution over all possible
system states by, = p(x|Hy), which is referred to as the
belief or information-state. Therefore, the action uj, can be
taken based on the belief by using a policy (planner) 7y, i.e.,
ug, = mk(by). In Bayesian filtering, belief can be computed
recursively based on the last action and current observation,
bet1 = 7(bk, uk, zp+1) [5], [26].

To find the policy 7, we need to define the objective of
planning. Although the objective function can be general,

the cost function we will use in our experiments includes
the localization uncertainty, control effort, and elapsed time.

c(br, ur) = Cptr(Py) + Cullukll + Crs (1)

where tr(Py) is the trace of estimation covariance. The norm
of the control signal ||ug|| denotes the control effort, and (7
is present in the cost to penalize each time lapse. Coefficients
Cp> Cu» and (7 are user-defined task-dependent scalars that
combine these costs to achieve a desirable behaviour. In the
presence of a constraint set F' (e.g., obstacles), we assume
that the task fails if the robot violates these constraints (e.g.,
collides with obstacles). Therefore, in case of failure, the
running-sum of costs (cost-to-go), i.e., J(F) = > 5 c(b,u)
is set to a suitably high cost-to-go.

Planning under uncertainty is defined as finding a sequence
of policies mo.00 (+) ={m1(:), m2(-), 3(-), - - - }. Therefore, the
original problem of stochastic control with imperfect state
information is defined as follows:

Problem 1. (POMDP) The problem of stochastic control
with imperfect state information, or the Partially-Observable
Markov Decision Process (POMDP) problem, is defined as
the following optimization over the policy space:

Toioo(+) = arg min > E[e(by, m (b)) @)
9% k=0

st bpy1 = T(bk,ﬂ'k(bk), Zk-),
Tpy1 = f(xr, Tr(br), wr),

2k ~ p(zk|Tr)
wy, ~ p(wi |z, Tk (br))

where, 11}, is the space of all possible policies at time step
k, ie., m, € Il

In the infinite horizon case, the solution is a stationary
policy s, i.e., 1 = Ty = --- = 7,. However, Problemﬂ] is
written in a more general setting to emphasize the connection
with rollout policy, discussed further below. Solving the
POMDP problem is computationally intractable over con-
tinuous state, action, and observation spaces. However, the
main problem that this paper aims to solve is the following:

Problem 2. (Re-Solving POMDP:s in real-time) In case of a
change in the failure set F' (e.g. obstacles) or large deviation
in the system’s belief, re-solve Problem [I]in real-time.

This paper aims at solving Problem [2 by exploiting FIRM,
which re-use the computations performed for solving the
POMDP problem a priori and hence can deal with such
changes online.

A. Sample Application Scenario

We exercise the proposed planner in an office-like environ-
ment, where we use a low-cost iRobot Create platform (Fig-
ure [T(a)), on which a Dell Latitude laptop with an on-board
camera is mounted. The robot obtains noisy measurements
(relative range and bearing) from unique landmarks that are
installed in the environment. The desired behaviour for the
planner is to guide the robot to a goal through those regions
of the environment where the robot can better localize itself
and hence better avoid collisions. Most importantly, the



planner needs to be able to replan online so that it can handle
changes in the environment and deviations resulting from
model discrepancies, large disturbances, and sensor failures.
We briefly discuss the environment, robot model, and sensory
system. More detailed descriptions can be found in [1].

Environment: The specific environment for conducting
experiments is the fourth floor of the Bright building at
Texas A&M University. A floorplan is shown in Fig. [I(b)]
The hallway (yellow) and the experiment region (blue) are
highlighted. The blue region contains a large cluttered office
(room 407) with several doors.

System model (robot and sensors): We use an iRobot
Create (Fig. , whose state x, = (xx,Yx,0x)? encodes
its 2D position and heading angle at the k-th time step.
The state evolution model zpi1 = f(xg,ur,wg) is the
unicycle model, where the control command uy, consists of
the linear and angular velocities uy = (Vi,wy)?. Motion
noise wy ~ N(0,Qy) gets added to the control signal (see
[1] for details). For sensing purposes, we use the laptop’s
on-board camera to detect landmarks (with unique black and
white patterns) that are placed at known locations on walls
(Fig. . Denoting the j-th landmark position as 7 L, the
obtained measurement is the relative range and bearing to
the landmark:

Izp = [|[Pdy||, atan2(?dy, , ?dy, ) — 0]T + v, Jv ~ N(0,7R),

where 'dy = [dy,,7da, |7 = [xk,yk]T — L;. Experimen-
tally, we have found that the intensity of measurement noise
Jv increases with the distance from the j-th landmark and
the incidence angle. The incidence angle refers to the angle
between the line connecting the camera to a landmark and
a surface normal to the wall on which the landmark is
mounted. Denoting the incident angle by ¢ € [—n/2,7/2],
we model the sensing noise associated with the j-th landmark
as a zero mean Gaussian whose covariance is

IRy, = diag ((nr, |17 di|| + nry lor] + 05)?,
(Mo, Akl +mo, 6% +00)%)  3)

In our implementation, we use 7,, = 0.1, nq, = 0.01,
oy = 0.05m, ng, = 0.001, 5y, = 0.01, and o} = 2.0deg.
The full vector of measurements z is the concatenation of
measurements from visible landmarks.

III. OVERVIEW OF FIRM

In this section, we briefly review the Feedback-based
Information RoadMap (FIRM) framework [2], [3]. However,
the concrete realization of FIRM constructed for conducting
the experiments is detailed in [1]. An Information RoadMap
(IRM) is a “multi-query” graph in belief space constructed
independent of the initial belief space. Therefore, the in-
tractable belief MDP problem can be reduced to a tractable
MDP problem on this graph. Each node in an IRM is a
small region B = {b: ||b—b|| < €} around a sampled belief
b. We denote the i-th node by B* and the set of nodes by
V = {B'}. Each edge in an IRM is a local controller. In
FIRM, each edge (local controller) is a feedback controller
whose goal is to drive the belief into the target node of the

edge. We denote the edge (controller) between nodes ¢ and
j by u¥ and the set of edges by M = {u*}. A policy 79
on the graph is a mapping from graph nodes to edges; i.e.,
79 : V — M. Denote the set of all possible policies as I19.
Having such a graph in belief space, we can form the
POMDP on the FIRM graph (so-called FIRM MDP):
79 = argminE CY(B,,w9(B, 4
gmi z::o (Bn, 7 (By)) “
where, B,, is the n-th visited node, and p,, is the edge taken
at B,. C9(B,pn) = ZZ:O c(bg, p(bg)) is the generalized
cost of taking local controller p at node B centered at bg.
We incorporate the failure set in planning by adding a
hypothetical FIRM node B° = F to the list of FIRM nodes.
As the FIRM MDP in Eq.@) is defined over the finite set
of nodes, we can solve it by computing the graph cost-to-go
through solving the followingNdynamic programming:

JIB) =min{CY(B', ) + Y P (BB ) (B} (5)
v=0

where PY(B7|B?, ) is the probability of reaching B” from
B under p. The failure and goal cost-to-go’s (i.e., J9(B°)
and J9(B9°%)) are set to a suitably high positive value and
zero, respectively. Accordingly, the replanning algorithms,
when start or goal changes, are presented in Algorithms [I]
and @ For a more detailed description of FIRM, see [1].

Algorithm 1: (Re)plan_from

Construct local planner p from by to B;
Compute transition cost C'(bg, 1) and probability
P(Blbo, p);

N
s | if Clbo, ) + 2 P(B|bo, u)J9(BY) < J*(B) then

v=0

1 input : Start belief by, cost-to-go J9(-), nodes V={B*}
2 output : Next Local Controller y*

3 Find r neighboring nodes M = {B*}!_; to bo;

4 Set J*(B) = oc;

5 for B € 1 do

6

7

9 J*(B) = C(bo, ) + 304 P(B|bo, ). (B7);
10 W=
11 return u*;

Algorithm 2: (Re)plan_to
input : Goal node B9°%, FIRM Graph G = {V, M}
output : FIRM feedback 79
Add B9°% to the graph; update V and M accordingly;
Compute the cost-to-go J9 and feedback 79 over the
FIRM nodes by solving the MDP in Eq. (3);

5 return 79;

L S

IV. DYNAMIC REPLANNING IN BELIEF SPACE

In this section, we first discuss the extension of the
Receding Horizon Control (RHC) and Rollout Policy (ROP)
[5] to belief space. Then we propose an ROP based on FIRM



that can cope with changes in the environment as well as
large deviations.

RHC in belief space: Receding horizon control (often
referred to as rolling-horizon or model-predictive control)
was originally designed for deterministic systems (to cope
with model discrepancy). For stochastic systems, where the
closed-loop (feedback) control law is needed, the best for-
mulation of the RHC scheme is a subject of current research
[8], [16], [22]. In the most common form of RHC [5],
the stochastic system is approximated with a deterministic
system by replacing the uncertain quantities with their typical
values (e.g., maximum likelihood value). In belief space
planning, the quantities that inject randomness into belief
dynamics are unknown future observations. Thus, one can re-
place random observations zj with their deterministic maxi-
mum likelihood value 2™, where 2" := arg max, p(zx|z¢)
in which ¢ is the nominal deterministic value for the state
that results from replacing the motion noise w by zero;
ie, z¢,, = f(z,m(b{),0). The deterministic belief b?
is then used for planning in the receding horizon window.
At every time step, the RHC scheme performs a two-stage
computation. To describe these stages, let us assume we are
at step n and the belief is b,,. At the first stage, the RHC
scheme for deterministic systems solves an open-loop control
problem (i.e., returns a sequence of actions wug.7) over a
fixed finite horizon T' by solving the following optimization
problem: T

ugr = arggﬂn E (b, u)
0:7 k=0
d dq mi d
st by =T(b, Uk, 2541), b5 = by

Z}Th = argmgxp(ZIw%H)
x(lijtl = f(mzvukv())v 6)

In the second stage, it executes only the first action wuyg
and discards the remaining actions in the sequence ug.p.
However, since the actual observation is noisy and is not
equal to the 2™ belief bn+1 will be different than bf.
Subsequently, RHC performs these two computations from
the new belief b, 1. In other words, RHC computes an
open loop sequence ug.p from this new belief. This process
continues until the belief reaches a desired belief location.
Algorithm [3] recaps this procedure.

Algorithm 3: RHC for Partially-observable stochastic
systems

1 input : Initial belief beyrrent € X, Bgoar C B

2 while beyrrent € Bgoar do

3 uo.7 = Solve the optimization in Eq.(6) starting
from bg = bcurrent;

4 Apply the action ug to the system;
5 Observe the actual z;
6 Compute the belief beyrrent < T(beurrent, U0, 2);

State-of-the-art methods such as [27] and [19] utilize this
form of RHC in belief space. This framework is also called

Partially-Closed Loop RHC (PCLRHC) [27] since it partially
exploits some information about the future observations (i.e.,
2™ and does not fully ignore them.

Issues with RHC: There are some issues regarding the
presented form of the RHC framework: First, due to the lim-
ited horizon and ignoring the cost-to-go beyond the horizon,
the method may get stuck into pitfalls by choosing actions
that guide the robot toward “favorable” states (with low cost)
in the near future followed by a set of “unfavorable” states
(with a high cost) in the long run. Second, the presented form
of RHC ignores the stochasticity of the system within the
horizon, which may lead to inaccurate approximations of the
cost and unreliable control actions. To overcome these issues,
researchers have proposed variants of RHC and different
frameworks based on the idea of repeated planning [5]. Here,
we discuss such a framework called “rollout policy” [5] and
aim to realize it in belief space using the FIRM framework.

Rollout policy in belief space: A class of methods that
aims to reduce the complexity of the stochastic planning
problem in Eq[2] is the class of Rollout Policies (ROP) [5],
which are more powerful than the described version of RHC
in the following sense: First, they search for a sequence of
policies (instead of open-loop controls) within the horizon,
and do not approximate the system with a deterministic
one. Second, they use a suboptimal policy, called the “base
policy,” to compute a cost-to-go function J that approximates
the true cost-to-go beyond the horizon. In other words, at
each step of the rollout policy scheme, the following closed-
loop optimization is solved:

T

mo.r(+) = argmin E Z c(bg, (b)) + j(bTH) @)
0:T o

st. bry1 = 7(bk, T (br), 21),

Tpp1 = fzr, e (br), wr),

2 ~ p(zx|ay)
wy, ~ p(wg|ay, T (b))

Then, only the first control law 7 is used to generate the
control signal ug and the rest of the policies are discarded.
Similar to RHC, after applying the first control, a new
sequence of policies is computed from the new point. The
rollout algorithm is shown in Algorithm

Algorithm 4: Rollout algorithm in Belief Space:

1 input : Initial belief beyrrent € B, Bgoar C B
2 while bcurrent ¢ Bgoal do
3 mo.7 = Solve optimization in Eq.(7) starting from

bO = bcurrent 5

4 Apply the action ug = m(bg) to the system;
5 Observe the actual z;
6 Compute the belief beyrrent < T(beurrents U0, 2);

Although the rollout policy in the belief space efficiently
reduces the computational cost compared to the original
POMDP problem, it is still formidable to solve, since the
optimization is carried out over the policy space. Moreover,
there should be a base policy that provides a reasonable cost-
to-go J. We propose a rollout policy in the belief space based
on the FIRM-based cost-to-go.



FIRM-based Rollout Policy: In the FIRM-based rollout
policy, we adopt the FIRM policy as the base policy of the
rollout algorithm. Accordingly, the cost-to-go of the FIRM
policy will be used as the cost-to-go beyond the horizon.
Now, if we have a dense FIRM graph such that FIRM nodes
partition the belief space (i.e., U; B' = B), then at the end
of the horizon, the belief br;; belongs to a FIRM node
B from which the FIRM cost-to-go is available. However,
in practice, when the FIRM nodes cannot cover the entire
belief space, we need to make sure that a truncated policy
can drive the belief into a FIRM node at the end of horizon.
Nevertheless, since the belief evolution is random, we may
not be able to guarantee that the belief reaches a FIRM node
at the end of a deterministic horizon 7T'. Therefore, instead
of truncating the policy over a fixed time, we truncate the
policy once the belief reaches a pre-specified stopping region

(which happens in a random time denoted by 7") as follows:
T

Toroo() = arg min B Zc(bk, (b)) + J(br41)
oo k=0
s.t. bk+1 = T(bk;’ﬂ-k(bk)a Zk)a Rk p(2k|$k)
Tht1 = f(.%'k,ﬁk(bk)7wk)7 Wi Np(wklxkﬂrk(bk))
b7*+1 S Uij, ¥

where for b1, € B we have
J(br1) = J9(B) ©)

The last condition in Eq[§| can be written more rigorously as
P(br41€U;B7|m)=1 for a finite 7. Also, as noted in Eq.(9),
it is worth noting that the FIRM-based cost-to-go J9(-) plays
the role of the cost-to-go beyond the horizon J(-).

Therefore, in solving the FIRM-based rollout policy prob-
lem, we aim to find a sequence of policies that ends up in
a FIRM node and minimizes the cost in Eq[8] To find this
optimal policy, we parametrize the policy space and perform
minimization over the parameter space.

In our implementation, we adopt a variant of the Open-
Loop Feedback Control (OLFC) scheme [5] along with a
Kalman Filter as the belief controller. In this variant of
OLFC, for a given v, we compute an open-loop control
sequence starting from the current estimation mean and
ending at v. Then, we apply a truncated sequence of the
first [ controls (I = 5 in our experiments). This process
repeats every [ steps until we reach the graph node. More
details can be found in [1]. Therefore, the policy can be
characterized by the next node; i.e., 7(-;v). Thus, to solve
the optimization in Eq we search for the FIRM node b/ =
(v7, P7) whose mean, i.e., v/, leads to the best local policy
7(+; v7). Accordingly, we implement the rollout technique in
Algorithm []

V. REPLANNING IN CHANGING ENVIRONMENTS AND
PRESENCE OF LARGE DEVIATIONS
In this section, we discuss how we handle changes in
the obstacle map and large deviations in the robot’s belief.
In general, handling these cases in belief space is a big
challenge as they require online updating of the planning

structure in belief space. It is important to note that it is
the graph structure of FIRM that makes such an update and
replanning feasible in real-time. The graph structure of FIRM
allows us to locally change collision probabilities without
affecting the rest of the graph (i.e., properties of different
edges on the graph are independent of each other). It is
important to note that such a property is not present in other
state-of-the-art belief space planners, including SARSOP
[15], BRM (Belief Roadmap Method) [21], or LQG-MP [28].
In those methods, collision probabilities and costs on all
edges (number of possible edges is exponential in the size
of underlying PRM) need to be re-computed.

A. Lazy Feedback Evaluation in Changing Environments

To adapt the proposed framework to handle changing
environments, we rely on lazy evaluation methods. Inspired
by the lazy evaluation methods for PRM frameworks [6],
we propose a variant of the lazy evaluation methods for
evaluating the generated feedback law. The basic idea is that
at every node the robot re-evaluates only the next edge that it
needs to take or a limited set of edges in the vicinity of the
robot. By re-evaluation, we mean it re-computes collision
probabilities along those edges. If there is a significant
change in the local collision probabilities, then the dynamic
programming problem is re-solved and a new feedback tree is
computed. Otherwise, the feedback tree remains unchanged
and the robot keeps following it. This lazy evaluation scheme
can be performed in real-time. The method is outlined in
Algorithm [3]

Algorithm 5: Lazy Feedback Re-Evaluation

1 input : Feedback 79, current belief by rrent

2 output : Updated feedback 79

3 Update the obstacles map;

4 if there is a change in map then

5 W < Retrieve the sequence of nominal edges
returned by feedback up to horizon /;

6 forall the edges ;1 € W do

7 Re-compute the collision probabilities

| Prew(B, 1) from the start node B of edge;

8 if exists p € W such that
]P)new(B, M) — P(B, ,u)| > « then
9 P(B, 1) < Prew(B, 1);

-

1 return 7w9;

B. Handling Large Disturbances (kidnapped robot problem)

In robotics, the kidnapped robot problem commonly refers
to a situation where an autonomous robot in operation is
carried to an arbitrary location. This problem introduces
different challenges such as (i) how to detect kidnapping,
(i1) how to localize the robot, and (iii) how to control the
robot to recover from this situation and accomplish its goal.
The third part of this problem calls for online replanning in
belief space.



Detecting a kidnapped situation: To detect the kidnapped
situation, we constantly monitor the innovation signal z =
zp—z, (the difference between actual and predicted observa-
tions). Recall that in our setting the observation at time step
k from the j-th landmark is the relative range and bearing
of the robot to the j-th landmark, i.e., 72 = (Yry,70}).
The predicted version of this measurement is shown by

Iz, = (?r;,76; ). We monitor the following measures of
the innovation signal:

7 = max([ry, —Irg]), 0y = max(d’(76;,76;)), (10)
J J

where d?(0,6') returns the absolute value of the smallest
angle that maps 6 onto ¢’. Passing these signals through a
low-pass filter, we filter out the outliers (temporary failures in
the sensory reading). Denoting the filtered signals by 7, and
0),, we monitor the conditions 7, < 7qp and 0 < Opmay. If
both of them are satisfied, we follow the FIRM feedback (i.e.,
we are in the Feedback Following Mode (FFM)). However,
violation of either of these conditions means that the robot
is constantly observing high innovations, and thus it is not in
the location that it was supposed to be (i.e., it is kidnapped).
In Section we show the innovation signal for a sample
run on a physical robot. In our implementation, we consider
Tmaz = 1 (meters) and 6,,,, = 50 (degrees).

Information Gathering Mode (IGM): Once the robot de-
tects it has been kidnapped, the estimation covariance is
replaced with a large covariance to get an approximately
uniform distribution over the state space. Then, we enter
the Information Gathering Mode (IGM), where we take
small and conservative steps (e.g., turning in place or tak-
ing random actions with small velocities) to obtain more
measurements. Once the robot gets these measurements, the
localization module corrects the estimation value and the
innovation signal reduces. When conditions 7y < 7,4, and
0 < O, are satisfied again, we exit the information
gathering mode.

Post-IGM replanning: After recovering from being kid-
napped, controlling the robot in belief space remains a
significant challenge because the system can be far from
where it was expected to be. However, using the proposed
method and assuming the FIRM graph has enough nodes
distributed well in the space, the robot needs to go only to
a neighboring node from this new point. Therefore, there is
no need for a costly replanning procedure. Indeed, the only
required computation is to evaluate the cost of edges that
connect the new start point to the neighboring FIRM nodes
based on Algorithm

VI. EXPERIMENTAL RESULTS

In this section, we first discuss the results of PRM and
FIRM-based motion planning and show how belief space
planning can improve the performance. Then, we distinguish
our method from the state-of-the-art by examining and
discussing the robustness properties of the proposed method
to changes in the obstacle map, and to large deviations in
the robot’s location and the goal location. The experiments

are conducted on a low-cost iRobot Create equipped with a
laptop and an integrated monocular web-camera (Fig. [I(a)).

A. Planning with PRM and FIRM

The goal of this section is to compare the performance of
FIRM with deterministic planners such as Medial Axis PRM
(MAPRM) [29]. The solution of the dynamic programming
problem, i.e., w9, is visualized with a feedback tree (FT).
For each node, FT contains only one outgoing edge (u =
79(B%)). FT is rooted at the goal node.

MAPRM-based planning: As one of the best variants of
PRM when it comes to collision avoidance, we construct
an MAPRM [29] in the environment (Fig. 2(a)). As is seen
in Fig. 2(a)l the path with maximum obstacle clearance
(and the shortest path) is the one through the front door of
room 407 (see Fig. [I(D)). Therefore, based on the obstacle
clearance, MAPRM leads to the feedback tree shown in
Fig. 2(b)| that guides the robot through the front door. To
execute the MAPRM plan we design LQG controllers to
track the computed path. However, due to the lack of enough
information along the solution path, the success rate of this
plan is 27% (27 runs out of 100 Monte Carlo runs were
successful) and the robot frequently collides with obstacles.

FIRM-based planning: In planning with FIRM, the in-
formation distribution in the environment is encoded in the
planning via a framework which leads to a better judgement
of the narrowness of passages in the belief space. Although
in this environment the path through the front door is shorter,
the success probability of traversing through the back door is
more due to the presence of more information sources. Such
knowledge about the environment is reflected in the FIRM
cost-to-go and success probability. As a result, it generates
a policy that suits the application, taking into account the
uncertainty, and available information in the environment.
Solving DP on the FIRM graph gives the feedback shown in
Fig. which results in an 88% success probability.

B. Robustness to Changes in the obstacle map

In this section, we investigate the robustness of the
proposed algorithm to changes in obstacles for a physical
system. In our experiments, we consider two types of obsta-
cles. The first set of obstacles (most of the map) are static
obstacles such as walls. The second class of obstacles include
those that discretely change their state such as doors (state
changes between “open” or “closed”) in the environment.
As discussed earlier, handling such changes is a challenge in
state-of-the-art belief space planners since the planner cannot
be updated locally and all computation for constructing the
planner needs to be reproduced, which is not a feasible
operation in real-time. The main focus of the following
experiments is to demonstrate how our method can replan
in real-time when faced with changes in the obstacle map.

We consider the environment shown in Fig. The start
and goal locations are shown in Fig. We construct a
PRM in the environment ignoring the changing obstacles
(e.g., assuming all doors are open). Leveraging PRM to
construct a FIRM and solving the dynamic programming
problem on it, we get the feedback tree shown in Fig. [3(a)]
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Fig. 2.

(a) The environment including obstacles (blue), free space (black), and landmarks (white diamonds) on the walls are shown. An MAPRM graph

approximating the connectivity of free space, starting point, and goal point are shown. (b) The feedback tree generated by solving DP on MAPRM is
shown in yellow. From each node there is only one outgoing edge (in yellow), computed by DP, guiding the robot toward the goal. Arrows in pink coarsely
represent the direction on which the feedback guides the robot. (c) The feedback tree generated by solving DP on FIRM; As is seen, the computed feedback
guides robots through more informative regions that leads to more accurate localization and less collision probabilities.

that guides the robot toward the goal through the back-door
of room 407. However, the challenge is that the door may
be closed when the robot reaches it, and there may be new
obstacles in the environment. The robot needs to replan in
real-time once it encounters such changes in the environment.
For details on the obstacle detection mechanism see [1].

Figure shows a snapshot of our run when the robot
detects the door is in a different situation than expected. As
a result, the robot updates the obstacle map as can be seen
in Fig. B(b)l in which the door is closed. Accordingly, the
robot replans in belief space based on Algorithm [5] Figure
3(b)| shows the feedback tree resulting from replanning. As
seen, the new feedback guides the robot through the front
door, since it detects the back door is closed. The video of
a long run (see Section provides more detail on this
procedure. Moreover, this video shows the robustness of the
method to temporary failures in the perception system (e.g.,
missing landmarks due to blockages, blur, etc.), which is
discussed more in [1].

C. Robustness to large deviations

In this section, we investigate the robustness of the pro-
posed framework in dealing with large deviations in the
robot’s position. As a more general form of this problem,
we consider the kidnapped robot problem as discussed in
the previous section. The need for online replanning in belief
space makes this problem challenging.

Figure [A(a)| shows a snapshot of a run that involves two
kidnappings and illustrates the robustness of the planning
algorithm to the kidnapping situation. The start and goal
positions are shown in Fig. The feedback tree (shown
in yellow) guides the robot toward the goal through the
front door. However, before reaching the goal point the
robot gets kidnapped in the hallway (cf. Fig. and
placed in an unknown location within room 407 (cf. Fig.
@(@). The first jump in shows this deviation. Once
the robot recovers from being kidnapped (i.e., when both
innovation signals in Fig. 4(b)| fall below their corresponding
thresholds), replanning from the new point is performed.
Feedback guides the robot toward the goal point from within
room 407. However, again, before robot reaches the goal
point, it is kidnapped and placed in an unknown location (see
Fig. (a)). The second jump in the innovation signals in Fig.
[(b) corresponds to this kidnapping. Again, replanning from

Robot’s view —_—
(Back door is open)

Goal point

Feedback goes
through the back door ~~i.

(a)

Back-door is closed ==

Goal point
et .,,.(’,’

An obstacle is added to

the doorway

Replanning leads to a feedback
that goes through the front door

(d)

Fig. 3. (a) The back door is open at this snapshot. The feedback guides the
robot toward goal through the back door. (b) The back door is closed at this
snapshot. Robot detects the door is closed and updates the obstacle map
(adds door). Accordingly robot replans and computes the new feedback.
The new feedback guides the robot through the front door.

the new point, the robot follows the feedback and reaches
the goal point.

D. A Longer and more complex experiment

We next demonstrate the ability of the system to perform
long-term tasks in a complex scenario that consists of visiting
several goals (each time therobot reaches a goal, a user
submits a new goal). The replanning ability allows the robot
to change the plan online in belief space as the goal location
changes. Moreover, the robot frequently encounters changes
in the obstacle map (open/closed doors and new obstacles
in the environment) as well as missing information sources
and kidnapped robot situations. Thus, the robot frequently
needs to perform a replanning operation in belief space to
deal with such frequent changes. A 25 minute video of this
run is recorded and available in [17] (a shorter version has
been submitted along with the paper) that shows the robot’s
performance in this complex scenario. In this video, the
robot faces three changes in the goal location, three changes
in the door’s state (open/closed), several new obstacles in
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Fig. 4.(a) The set up for the experiment containing two kidnapping. (b) Innovation signals 7} and §k during this run. When both of the signals are below
specified thresholds 7mmae and @mez (dashed red lines), robot follows the FIRM feedback. Otherwise, the system enters the information gathering mode.

the environment, three kidnapping situations, and numerous
failures of the sensory systems due to missing landmarks,
blur in image, and etc.

VII. CONCLUSION

In this paper, we present an application of the FIRM
motion planning method to a physical robotic system. This
paper proposes a robust method for belief space planning
based on efficient online replanning. Such replanning is a key
ability in handling discrepancies between real world mod-
els and computational models, changes in the environment
and obstacles, large deviations, and changes in information
sources. We implemented this belief space planner on a
physical system and demonstrate the robustness to such
discrepancies that occur in practice. We believe this work
provides an important step toward making POMDP methods
applicable to real world robotic systems.
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